A007465 Exponential-convolution of triangular numbers with themselves.
1, 6, 30, 128, 486, 1692, 5512, 17040, 50496, 144512, 401664, 1089024, 2890240, 7529472, 19298304, 48754688, 121602048, 299827200, 731643904, 1768685568, 4239261696, 10081796096, 23805296640, 55839817728, 130187001856, 301813727232, 696036360192, 1597358735360
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Crossrefs
Cf. A000217.
Programs
-
Mathematica
a = DifferenceRoot[Function[{a, n}, {(-2n^4 - 28n^3 - 158n^2 - 388n - 384)* a[n] + (n^4 + 10n^3 + 43n^2 + 74n + 64)*a[n+1] == 0, a[0] == 1}]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 24 2019 *)
Formula
G.f.: (-1-6*x^4+12*x^3-10*x^2+4*x)/(2*x-1)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
E.g.f.: (1/4)*exp(2*x)*(2 + 4*x + x^2)^2. - Ilya Gutkovskiy, Mar 21 2018