cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007465 Exponential-convolution of triangular numbers with themselves.

Original entry on oeis.org

1, 6, 30, 128, 486, 1692, 5512, 17040, 50496, 144512, 401664, 1089024, 2890240, 7529472, 19298304, 48754688, 121602048, 299827200, 731643904, 1768685568, 4239261696, 10081796096, 23805296640, 55839817728, 130187001856, 301813727232, 696036360192, 1597358735360
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000217.

Programs

  • Mathematica
    a = DifferenceRoot[Function[{a, n}, {(-2n^4 - 28n^3 - 158n^2 - 388n - 384)* a[n] + (n^4 + 10n^3 + 43n^2 + 74n + 64)*a[n+1] == 0, a[0] == 1}]];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 24 2019 *)

Formula

G.f.: (-1-6*x^4+12*x^3-10*x^2+4*x)/(2*x-1)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
E.g.f.: (1/4)*exp(2*x)*(2 + 4*x + x^2)^2. - Ilya Gutkovskiy, Mar 21 2018