cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007546 Number of steps to compute n-th prime in PRIMEGAME (fast version).

Original entry on oeis.org

19, 69, 280, 707, 2363, 3876, 8068, 11319, 19201, 36866, 45551, 75224, 101112, 117831, 152025, 215384, 293375, 327020, 428553, 507519, 555694, 700063, 808331, 989526, 1273490, 1434366, 1530213, 1710923, 1818254, 2019962, 2833089, 3104685, 3546320, 3720785
Offset: 1

Views

Author

Keywords

References

  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): f:= proc(n) local l, b, d; l:= sort([divisors (n)[]]); b:= l[nops(l)-1]; n-1 +(6*n+2)*(n-b) +2*add(floor(n/d), d=b..n-1) end: a:= proc(n) option remember; `if`(n=1, f(2), a(n-1) +add(f(i), i=ithprime(n-1)+1..ithprime(n))) end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 12 2009
  • Mathematica
    f[n_] := Module[{l, b, d}, l = Divisors [n]; b = l[[-2]]; n-1 + (6*n+2)*(n-b) + 2*Sum[Floor[n/d], {d, b, n-1}]]; a[n_] := a[n] = If[n == 1, f[2], a[n-1] + Sum[f[i], {i, Prime[n-1]+1, Prime[n]}]]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Oct 04 2013, translated from Alois P. Heinz's Maple program *)

Extensions

More terms from Alois P. Heinz, Aug 12 2009