A182172
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
Columns k=0-12 give:
A000007,
A000012,
A001405,
A001006,
A005817,
A049401,
A007579,
A007578,
A007580,
A212915,
A212916,
A229053,
A229068.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
A293738
Number of multisets of nonempty words with a total of n letters over octonary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 3, 7, 20, 54, 164, 500, 1630, 5471, 19246, 70020, 264961, 1035540, 4187725, 17440159, 74817905, 329400093, 1487844185, 6873585346, 32460719143, 156315314070, 767106102127, 3828629444020, 19423438144438, 99998608025751, 522200287437179, 2762351298913471
Offset: 0
-
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1],
((40*n^3+1084*n^2+8684*n+18480)*g(n-1) +16*(n-1)*
(5*n^3+107*n^2+610*n+600)*g(n-2) -1024*(n-1)*(n-2)*
(n+6)*g(n-3) -1024*(n-1)*(n-2)*(n-3)*(n+4)*g(n-4))
/((n+7)*(n+12)*(n+15)*(n+16)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
A293747
Number of sets of nonempty words with a total of n letters over octonary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 2, 6, 15, 45, 136, 430, 1415, 4844, 17224, 63397, 241968, 953213, 3879822, 16250333, 70050877, 309714232, 1404000641, 6506809837, 30813282963, 148741986670, 731495853897, 3657808596354, 18588011870288, 95841754173073, 501169433939670, 2654344778727646
Offset: 0
-
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1],
((40*n^3+1084*n^2+8684*n+18480)*g(n-1) +16*(n-1)*
(5*n^3+107*n^2+610*n+600)*g(n-2) -1024*(n-1)*(n-2)*
(n+6)*g(n-3) -1024*(n-1)*(n-2)*(n-3)*(n+4)*g(n-4))
/((n+7)*(n+12)*(n+15)*(n+16)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]][ Length[l]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]];
a[n_] := b[n, n, 8];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 06 2018, using code from A293112 *)
A049400
Partial sums of rows of A047884. Young Tableaux by height.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 6, 9, 10, 1, 10, 21, 25, 26, 1, 20, 51, 70, 75, 76, 1, 35, 127, 196, 225, 231, 232, 1, 70, 323, 588, 715, 756, 763, 764, 1, 126, 835, 1764, 2347, 2556, 2611, 2619, 2620, 1, 252, 2188, 5544, 7990, 9096, 9415, 9486, 9495, 9496, 1, 462, 5798, 17424, 27908, 33231, 35135, 35596
Offset: 1
1;
1, 2;
1, 3, 4;
1, 6, 9, 10;
1, 10, 21, 25, 26;
1, 20, 51, 70, 75, 76;
1, 35, 127, 196, 225, 231, 232;
1, 70, 323, 588, 715, 756, 763, 764;
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
T:= (n, k)-> g(n, k, []):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 16 2012
-
Accumulate /@ Table[ Plus @@ NumberOfTableaux /@ Reverse /@ Union[ Sort /@ (Compositions[n - m, m] + 1)], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 29 2013, after Mathematica program for A047884 *)
A229053
Number of standard Young tableaux of n cells and height <= 11.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140151, 568491, 2390311, 10347911, 46191551, 211671999, 996269310, 4801547628, 23695885170, 119481280210, 615372604033, 3232009497979, 17302866542177, 94301143232321, 522945331559246, 2947729723188352
Offset: 0
-
RecurrenceTable[{-10395 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-3 (-4+n) (-3+n) (-2+n) (-1+n) (28701+2578 n) a[-5+n]+(-3+n) (-2+n) (-1+n) (331317+74458 n+3319 n^2) a[-4+n]+2 (-2+n) (-1+n) (546120+154023 n+11843 n^2+270 n^3) a[-3+n]-(-1+n) (1857231+1090536 n+149299 n^2+7472 n^3+125 n^4) a[-2+n]+(-2755377-1658520 n-265085 n^2-17752 n^3-535 n^4-6 n^5) a[-1+n]+(10+n) (18+n) (24+n) (28+n) (30+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10,a[5]==26,a[6]==76}, a, {n, 20}]
A217321
Number of self-inverse permutations in S_n with longest increasing subsequence of length 9.
Original entry on oeis.org
1, 9, 89, 639, 4655, 30330, 198148, 1233743, 7694099, 46938514, 287070944, 1738940782, 10570927022, 64059763010, 389873574058, 2373799261605, 14522526860316, 89060416668016, 548932942208392, 3395326330414774, 21109553761623110, 131785019270029876
Offset: 9
A217328
Number of self-inverse permutations in S_n with longest increasing subsequence of length 8.
Original entry on oeis.org
1, 8, 71, 461, 3057, 18225, 109446, 628652, 3628517, 20538209, 116808172, 659078098, 3737763884, 21153403644, 120354760098, 685455514294, 3925104616303, 22535893275064, 130089736567064, 753604985013128, 4388755545268226, 25660332309744370, 150802834643569274
Offset: 8
a(8) = 1: 12345678.
a(9) = 8: 123456798, 123456879, 123457689, 123465789, 123546789, 124356789, 132456789, 213456789.
A218269
Number of standard Young tableaux of n cells and height >= 9.
Original entry on oeis.org
1, 10, 100, 760, 5656, 38416, 257376, 1660416, 10640692, 67100072, 422374352, 2643349180, 16566306380, 103786892840, 652502735152, 4113403313016, 26057914447911, 165824119892086, 1061381766546172, 6832087071296824, 44260892997918920, 288574772339715376
Offset: 9
-
b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1],
((40*n^3+1084*n^2+8684*n+18480)*g(n-1) +16*(n-1)
*(5*n^3+107*n^2+610*n+600)*g(n-2) -1024*(n-1)*(n-2)
*(n+6)*g(n-3) -1024*(n-1)*(n-2)*(n-3)*(n+4)*g(n-4))/
((n+7)*(n+12)*(n+15)*(n+16)))
end:
a:= n-> b(n) -g(n):
seq(a(n), n=9..30);
A229068
Number of standard Young tableaux of n cells and height <= 12.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568503, 2390466, 10349340, 46204720, 211779200, 997134592, 4808141824, 23745792032, 119848119307, 618058083314, 3251373425356, 17442275104496, 95297400355320, 530067682582320, 2998503402985440
Offset: 0
Cf.
A182172,
A001405 (k=2),
A001006 (k=3),
A005817 (k=4),
A049401 (k=5),
A007579 (k=6),
A007578 (k=7),
A007580 (k=8),
A212915 (k=9),
A212916 (k=10),
A229053 (k=11).
-
RecurrenceTable[{-147456 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (12+n) a[-6+n]-110592 (-4+n) (-3+n) (-2+n) (-1+n) (29+2 n) a[-5+n]+256 (-3+n) (-2+n) (-1+n) (121272+32786 n+2343 n^2+49 n^3) a[-4+n]+128 (-2+n) (-1+n) (438597+90321 n+5391 n^2+98 n^3) a[-3+n]-16 (-1+n) (8718630+5347213 n+804616 n^2+49754 n^3+1372 n^4+14 n^5) a[-2+n]-8 (27335490+10162354 n+1206473 n^2+63328 n^3+1533 n^4+14 n^5) a[-1+n]+(11+n) (20+n) (27+n) (32+n) (35+n) (36+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]
Showing 1-9 of 9 results.
Comments