A007597 Strobogrammatic primes.
11, 101, 181, 619, 16091, 18181, 19861, 61819, 116911, 119611, 160091, 169691, 191161, 196961, 686989, 688889, 1008001, 1068901, 1160911, 1180811, 1190611, 1191611, 1681891, 1690691, 1880881, 1881881, 1898681, 1908061, 1960961, 1990661, 6081809, 6100019, 6108019
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. W. Trigg, "Strobogrammatic Primes and Prime Rotative Twins", J. Rec. Math., 15 (1983), 281-282.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..304 from K. D. Bajpai)
- C. K. Caldwell, The Prime Glossary, Strobogrammatic
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Wikipedia, Strobogrammatic prime
Crossrefs
Cf. A000787.
Programs
-
Mathematica
lst = {}; fQ[n_] := Block[{allset = {0, 1, 6, 8, 9}, id = IntegerDigits@n}, Union@ Join[id, allset] == allset && Reverse[id /. {6 -> 9, 9 -> 6}] == id]; Do[ If[ PrimeQ@n && fQ@n, AppendTo[lst, n]], {n, 2000000}]; lst (* Robert G. Wilson v, Feb 27 2007 *)
-
Python
from sympy import isprime from itertools import count, islice, product def ud(s): return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')}) def agen(): for d in count(2): for start in "1689": for rest in product("01689", repeat=d//2-1): left = start + "".join(rest) right = ud(left) for mid in [[""], ["0", "1", "8"]][d%2]: t = int(left + mid + right) if isprime(t): yield t print(list(islice(agen(), 33))) # Michael S. Branicky, Mar 29 2022
Extensions
More terms from David W. Wilson
a(31)-a(33) from K. D. Bajpai, Jun 23 2017
Comments