A344780 Semiprimes that are product of two distinct Honaker primes.
34453, 59867, 120191, 136109, 137419, 142921, 170431, 178291, 187723, 205801, 250603, 253223, 273257, 275887, 280471, 286933, 290951, 297763, 319771, 339421, 342163, 348853, 354617, 356189, 357499, 357943, 367193, 376879, 401777, 410947, 413173, 422999, 449723
Offset: 1
Examples
34453 = 131*263 which are distinct Honaker primes. 120191 = 263*457 which are distinct Honaker primes.
Programs
-
Maple
isA006881 := proc(n) if numtheory[bigomega](n) =2 and A001221(n) = 2 then true ; else false ; end if; end proc: isA344780 := proc(n) if isA006881(n) then for p in ifactors(n)[2] do if not isA033548(op(1,p)) then return false; end if; end do: true ; else false; end if; end proc: for n from 1 do if isA344780(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jul 07 2021
-
Mathematica
fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; lst = {}; Do[If[Plus @@ Last /@ FactorInteger[n] == 2, a = Length[First /@ FactorInteger[n]]; If[a == 2, b = First /@ FactorInteger[n]; c = b[[1]]; d = b[[2]]; If[fHQ[c] && fHQ[d], AppendTo[lst, {n,c,d}]]]], {n, 2000000}]; lst
Comments