A007617 Values not in range of Euler phi function.
3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 107
Offset: 1
Keywords
Examples
There are no solutions to phi(m)=14, so 14 is a member of the sequence.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Jerzy Browkin and Andrzej Schinzel, On integers not of the form n-phi(n), Colloq. Math., Vol. 58 (1995), pp. 55-58.
- Paul Erdős and R. R. Hall, Distinct values of Euler's phi-function, Mathematika, Vol. 23 (1976), pp. 1-3.
- Kevin Ford, The distribution of totients. Paul Erdős (1913-1996). Ramanujan J., Vol. 2 (1998) pp. 67-151; arXiv preprint, arXiv:1104.3264 [math.NT], 2011-2013.
- Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc., Vol. 4 (1998) pp. 27-34.
- Kevin Ford, The number of solutions of phi(x)=m, Ann. of Math.(2), Vol. 150, No. 1 (1999), pp. 283-311.
- Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica, Vol. 49, No. 3 (1988), pp. 263-275.
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
- Maxim Rytin, Finding the Inverse of Euler Totient Function, Wolfram Library Archive, 1999.
- Zhang Ming-Zhi, On nontotients, J. Number Theory, Vol. 43, No. 2 (1993), pp. 168-173.
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (minus) a007617 n = a007617_list !! (n-1) a007617_list = [1..] `minus` a002202_list -- Reinhard Zumkeller, Nov 22 2015
-
Maple
A007617 := n -> if invphi(n)=[] then n fi: seq(A007617(i),i=1..107); # Peter Luschny, Jun 26 2011
-
Mathematica
inversePhi[m_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; Select[Range[107], inversePhi[#] == {} &] (* Jean-François Alcover, Jan 03 2012 *) Select[Range[107], invphi[#] == {}&] (* Jean-François Alcover, Mar 19 2019, using Maxim Rytin's much faster 'invphi' program *)
-
PARI
is(n)=!istotient(n) \\ Charles R Greathouse IV, Dec 28 2013
Formula
A264739(a(n)) = 0. - Reinhard Zumkeller, Nov 26 2015
Comments