cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A036459 Number of iterations required to reach stationary value when repeatedly applying d, the number of divisors function (A000005).

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 3, 4, 1, 4, 1, 4, 3, 3, 3, 3, 1, 3, 3, 4, 1, 4, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 4, 1, 4, 3, 4, 1, 5, 1, 3, 4, 4, 3, 4, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 5, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

Iterating d for n, the prestationary prime and finally the fixed value of 2 is reached in different number of steps; a(n) is the number of required iterations.
Each value n > 0 occurs an infinite number of times. For positions of first occurrences of n, see A251483. - Ivan Neretin, Mar 29 2015

Examples

			If n=8, then d(8)=4, d(d(8))=3, d(d(d(8)))=2, which means that a(n)=3. In terms of the number of steps required for convergence, the distance of n from the d-equilibrium is expressed by a(n). A similar method is used in A018194.
		

Crossrefs

Programs

  • Mathematica
    Table[ Length[ FixedPointList[ DivisorSigma[0, # ] &, n]] - 2, {n, 105}] (* Robert G. Wilson v, Mar 11 2005 *)
  • PARI
    for(x = 1,150, for(a=0,15, if(a==0,d=x, if(d<3,print(a-1),d=numdiv(d) )) ))
    
  • PARI
    a(n)=my(t);while(n>2,n=numdiv(n);t++);t \\ Charles R Greathouse IV, Apr 07 2012

Formula

a(n) = a(d(n)) + 1 if n > 2.
a(n) = 1 iff n is an odd prime.

A036457 Numbers k for which exactly 5 applications of A000005 are needed to reach 2.

Original entry on oeis.org

60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156, 160, 180, 198, 200, 204, 220, 224, 228, 234, 240, 252, 260, 276, 288, 294, 300, 306, 308, 315, 336, 340, 342, 348, 350, 352, 360, 364, 372, 380, 392, 396, 414, 416, 420, 432, 444, 450, 460, 468, 476, 480
Offset: 1

Views

Author

Keywords

Comments

Subsequences include A030630 (numbers with 12 divisors), A030636 (numbers with 18 divisors), A030638 (numbers with 20 divisors), A137491 (numbers with 28 divisors), etc. [edited by Jon E. Schoenfield, May 12 2018]

Examples

			a(13)=180; the successive iterates are 18, 6, 4, 3, and finally the 5th is 2;
a(3)=84; divisor numbers are 12, 6, 4, 3, and 2.
		

Crossrefs

Programs

  • Maple
    A036459:= proc(n) option remember;
      if n <= 2 then 0 else 1 + procname(numtheory:-tau(n)) fi
    end proc:
    select(A036459 = 5, [$1..1000]); # Robert Israel, Jan 25 2016
  • Mathematica
    Select[Range@ 480, Last@ # == 2 && #[[5]] != 2 &@ NestList[DivisorSigma[0, #] &, #, 5] &] (* Michael De Vlieger, Jan 26 2016 *)
  • PARI
    is(n)=for(i=1,4,n=numdiv(n); if(n<3, return(0))); numdiv(n)==2 \\ Charles R Greathouse IV, Sep 17 2015

Formula

d(d(d(d(d(a(n)))))) = 2 for all n.
A036459(a(n)) = 5. - Ivan Neretin, Jan 25 2016

Extensions

New name from Robert Israel, Jan 25 2016

A036456 Numbers k for which exactly 4 applications of A000005 are needed to reach 2.

Original entry on oeis.org

12, 18, 20, 24, 28, 30, 32, 40, 42, 44, 45, 48, 50, 52, 54, 56, 63, 66, 68, 70, 75, 76, 78, 80, 88, 92, 98, 99, 102, 104, 105, 110, 112, 114, 116, 117, 124, 128, 130, 135, 136, 138, 144, 147, 148, 152, 153, 154, 162, 164, 165, 170, 171, 172, 174, 175, 176, 182
Offset: 1

Views

Author

Keywords

Comments

Similar to but different from A007624. Terms like 60, 72, 84, 90, 96, 108, 126, etc. are not present here.

Examples

			a(3)=20 and a(17)=63; for both x=20 and 63, d(x)=6 and d(d(x))=4, the 3rd iterates are 3 and the equilibrium value, i.e., 2 appears as 4th iterates.
		

Crossrefs

Programs

  • PARI
    isok(n) = ((nd=numdiv(n)) != 2) && ((nd=numdiv(nd)) != 2) && ((nd=numdiv(nd)) != 2) && ((nd=numdiv(nd)) == 2); \\ Michel Marcus, Dec 30 2013 & Jan 26 2015

Formula

With d(n) = number of divisors(n), d(d(d(d(a(n))))) = 2 and d(d(d(a(n)))) > 2.
A036459(a(n)) = 4. - Ivan Neretin, Jan 25 2016

Extensions

New name (using new name for A036457 from Robert Israel) from Jon E. Schoenfield, May 12 2018
Showing 1-3 of 3 results.