cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007650 Number of set-like atomic species of degree n.

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 6, 1, 10, 4, 12, 1, 33, 1, 29, 13, 64, 1, 100, 1, 156, 30, 187, 1, 443, 10, 476, 78, 877, 1, 1326, 1, 2098, 188, 2745, 36, 5203, 1, 6408, 477, 11084, 1, 15687, 1, 24709, 1241, 33249, 1, 57432, 27, 74529, 2746, 120984, 1, 168668, 194, 264075, 6409, 356624, 1, 579893, 1, 768857, 14898, 1214452, 483, 1669060, 1
Offset: 0

Views

Author

Keywords

References

  • G. Labelle and P. Leroux, Identities and enumeration: weighting connected components, Abstracts Amer. Math. Soc., 15 (1994), Meeting #896.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    NN = 66;  va = Array[0&, NN]; va[[1]] = 0; va[[2]] = 1; vm = Array[0&, NN]; vm[[1]] = 1; vm[[2]] = 1; For[n = 2, n <= NN - 1, n++, va[[n + 1]] = DivisorSum[n , vm[[#+1]]&]; vm[[n+1]] = 1/n*Sum[DivisorSum[k, #*va[[#+1]] &]*vm[[n-k+1]], {k, 1, n}]]; va (* Jean-François Alcover, Dec 01 2015, adapted from Joerg Arndt's PARI script in A007649 *)
  • PARI
    /* see A007649 */

Formula

Inverse Euler Transform of A007649. Define c(n): c(0)=0. c(k)=A007649(k), k>0. a=MOEBIUSi(c)-c. - Christian G. Bower, Feb 23 2006

Extensions

Added more terms, Joerg Arndt, Jul 30 2012