A007650 Number of set-like atomic species of degree n.
0, 1, 1, 1, 3, 1, 6, 1, 10, 4, 12, 1, 33, 1, 29, 13, 64, 1, 100, 1, 156, 30, 187, 1, 443, 10, 476, 78, 877, 1, 1326, 1, 2098, 188, 2745, 36, 5203, 1, 6408, 477, 11084, 1, 15687, 1, 24709, 1241, 33249, 1, 57432, 27, 74529, 2746, 120984, 1, 168668, 194, 264075, 6409, 356624, 1, 579893, 1, 768857, 14898, 1214452, 483, 1669060, 1
Offset: 0
Keywords
References
- G. Labelle and P. Leroux, Identities and enumeration: weighting connected components, Abstracts Amer. Math. Soc., 15 (1994), Meeting #896.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joerg Arndt, Table of n, a(n) for n = 0..100
- S. Eberhart & N. J. A. Sloane, Correspondence, 1977
- G. Labelle and P. Leroux, Identities and enumeration: weighting connected components, Abstracts Amer. Math. Soc., 15 (1994), Meeting #896. (Annotated scanned copy)
- G. Labelle and P. Leroux, An extension of the exponential formula in enumerative combinatorics, The Electronic Journal of Combinatorics, Volume 3, Issue 2 (1996) (The Foata Festschrift volume), Research Paper #R12.
- N. J. A. Sloane, Transforms.
Programs
-
Mathematica
NN = 66; va = Array[0&, NN]; va[[1]] = 0; va[[2]] = 1; vm = Array[0&, NN]; vm[[1]] = 1; vm[[2]] = 1; For[n = 2, n <= NN - 1, n++, va[[n + 1]] = DivisorSum[n , vm[[#+1]]&]; vm[[n+1]] = 1/n*Sum[DivisorSum[k, #*va[[#+1]] &]*vm[[n-k+1]], {k, 1, n}]]; va (* Jean-François Alcover, Dec 01 2015, adapted from Joerg Arndt's PARI script in A007649 *)
-
PARI
/* see A007649 */
Formula
Inverse Euler Transform of A007649. Define c(n): c(0)=0. c(k)=A007649(k), k>0. a=MOEBIUSi(c)-c. - Christian G. Bower, Feb 23 2006
Extensions
Added more terms, Joerg Arndt, Jul 30 2012