A007687 Number of 4-colorings of cyclic group of order n.
3, 10, 21, 44, 83, 218, 271, 692, 865, 2622, 2813, 9220, 9735, 35214, 35911, 135564, 136899, 533290, 535081
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Haas, Three-colorings of finite groups or an algebra of nonequalities, Math. Mag., 63 (1990), 211-225.
- Robert Haas, Letter to N. J. A. Sloane, Aug. 1994
Crossrefs
Cf. A007688.
Programs
-
Python
from itertools import product def colorings(n, zp): result = 0 for f in product(range(n), repeat=zp): for j1 in range(zp): for j2 in range(zp): if (f[j1]+f[j2])%n == f[(j1+j2)%zp]: break else: continue break else: result += 1 return result print([colorings(4, k) for k in range(1, 12)]) # Andrey Zabolotskiy, Jul 12 2017
Extensions
a(6)-a(11) from Andrey Zabolotskiy, Jul 12 2017
a(12)-a(17) from Andrey Zabolotskiy, Oct 02 2017
a(18)-a(19) from Lucas A. Brown, Sep 20 2024
Comments