A007695 Cardinalities of Sperner families on 1,...,n.
2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354, 289725509, 49513793526, 19089032278261, 16951604697397302, 35231087224279091310, 173550485517380958360611, 2047581288200721764035942914
Offset: 0
References
- S. Johnson, Upper bounds for constant weight error correcting codes, Discrete Math., 3 (1972), 109-124.
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
- D. E. Knuth, Art of Computer Programming, Vol. 4, Section 7.3, to appear.
- S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Knuth, Email to N. J. A. Sloane, Aug. 1994.
- Tamon Stephen and Timothy Yusun, Counting inequivalent monotone Boolean functions, arXiv preprint arXiv:1209.4623 [cs.DS], 2012.
Programs
-
Mathematica
c[ 0, 0 ]=1; c[ 0, 1 ]=1; kap[ 0, 0 ]=0; f[ n_ ] := Block[ {s=2, r, d, k, j}, For[ r=1, r<=n, r++, d=s; k=r; j=0; s=0; For[ x=0, x<=Binomial[ n, r ], x++, If[ x>=Binomial[ k, r ], k++, 0 ]; kap[ r, x ]=If[ x==0, 0, Binomial[ k-1, r-1 ]+kap[ r-1, x-Binomial[ k-1, r ] ] ]; While[ j
Extensions
Entry revised by N. J. A. Sloane, Sep 03 2011
Comments