cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A011828 Number of f-vectors for simplicial complexes of dimension at most 3 on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 10, 26, 95, 457, 2246, 9705, 35926, 115688, 331201, 859587, 2054860, 4582126, 9627831, 19217260, 36679253, 67308375, 119286676, 204940824, 342425909, 557944719, 888630900, 1386246251, 2121866592, 3191757298
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Formula

a(n+1) = (12*n^10 -112*n^9 +351*n^8 -132*n^7 +378*n^6 -2856*n^5 +4839*n^4 +56812*n^3 -5580*n^2 +309168*n +725760)/362880 fits terms up to 3191757298. [Frank Ellermann]
Empirical G.f.: -x*(x^10 -11*x^9 +69*x^8 -130*x^7 +380*x^6 -400*x^5 +356*x^4 -210*x^3 +82*x^2 -19*x +2)/(x -1)^11. [Colin Barker, Sep 18 2012]

A011833 Number of f-vectors for simplicial complexes of dimension at most 8 on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354, 289725508, 49224068017, 13203989190379, 2498210880028303, 272472900722736282, 18445455348353453707, 846271790301299050986, 28189314873080070171124
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

Crossrefs

See A007695 for further information.

A011829 Number of f-vectors for simplicial complexes of dimension at most 4 on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 10, 26, 96, 552, 4908, 48230, 398663, 2631241, 14192097, 64663638, 256174350, 902972232, 2883651027, 8463753978, 23094833355, 59133598085, 143164108028, 329810868994, 726833391860, 1539215246944, 3144340388550
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

Comments

Apparently a polynomial (n^15)/32659200 + .... [Frank Ellermann]

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Formula

Empirical G.f.: -x*(x^15 -16*x^14 +114*x^13 -1154*x^12 -2541*x^11 -16919*x^10 -6585*x^9 -17282*x^8 +9460*x^7 -8548*x^6 +5196*x^5 -2426*x^4 +830*x^3 -197*x^2 +29*x -2)/(x -1)^16. [Colin Barker, Sep 18 2012]

A220880 Number of profiles of monotone Boolean functions of n variables.

Original entry on oeis.org

1, 2, 4, 9, 25, 95, 552, 5460, 100708, 3718353, 289725508, 49513793525, 19089032278260, 16951604697397301, 35231087224279091309, 173550485517380958360610, 2047581288200721764035942913
Offset: 0

Views

Author

N. J. A. Sloane, Dec 28 2012

Keywords

Comments

Equals A007695(n) - 1.

References

  • Matthias Thimm, On the expressivity of inconsistency measures, Artificial Intelligence, Volume 234, May 2016, Pages 120-151.

Crossrefs

Cf. A007695.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.

A088505 a(n) = (2^(3*n-1))/(integral_{x=0..1} (1-x^4)^n dx).

Original entry on oeis.org

5, 45, 390, 3315, 27846, 232050, 1922700, 15862275, 130423150, 1069469830, 8750207700, 71460029550, 582674087100, 4744631852100, 38589672397080, 313541088226275, 2545215892660350, 20644528907133950, 167329339563085700
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Nov 13 2003

Keywords

Examples

			a(3)=390 (a(0) would be 1/2, so the sequence begins at n=1).
		

Programs

  • Mathematica
    f[n_] := 2^(3n - 1)/Integrate[(1 - x^4)^n, {x, 0, 1}]; Table[ f[n], {n, 1, 19}] (* Robert G. Wilson v, Feb 26 2004 *)
  • PARI
    a(n)=round(2^(3*n-1)/(n!*Pi*sqrt(2)/(4*gamma(3/4)*gamma(n+5/4))))

Formula

The integral is equal to n!*Pi*sqrt(2)/(4*GAMMA(3/4)*GAMMA(n+5/4)). - N. J. A. Sloane
GAMMA(3/4)*GAMMA(n+5/4) is Pi*sqrt(2)*A007696(n+1)/4^(n+1), so the integral is n!*4^n/A007695(n+1) and a(n) = 2^(n-1)*A007696(n+1)/n!. - R. J. Mathar, Feb 04 2021
D-finite with recurrence n*a(n) +2*(-4*n-1)*a(n-1)=0. - R. J. Mathar, Feb 04 2021

Extensions

More terms from Benoit Cloitre, Nov 14 2003
Showing 1-6 of 6 results.