cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007703 Regular primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281, 313, 317, 331, 337, 349, 359, 367, 373, 383, 397, 419, 431
Offset: 1

Views

Author

Keywords

Comments

A prime p is regular if and only if the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) are not divisible by p.

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430.
  • H. M. Edwards, Fermat's Last Theorem, Springer, 1977.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 223-227.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000928 (irregular primes) and A061576 for further references.

Programs

  • Mathematica
    s = {}; Do[p = Prime@n; k = 1; While[2k <= p - 3 && Mod[Numerator@BernoulliB[2k], p] != 0, k++ ]; If[2k > p - 3, AppendTo[s, p]], {n, 2, 80}]; s (* Robert G. Wilson v Sep 20 2006 *)
  • PARI
    is(p)=forstep(k=2,p-3,2,if(numerator(bernfrac(k))%p==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Feb 25 2014
    
  • Python
    from sympy import prime, isprime, bernoulli
    def ok(n):
        for k in range(2, n - 2, 2):
            if bernoulli(k).as_numer_denom()[0] % n == 0:
                return 0
        return isprime(n)
    [n for n in range(3, 501) if ok(n)] # Indranil Ghosh, Jun 27 2017, after Charles R Greathouse IV

Extensions

Corrected by Gerard Schildberger, Jun 01 2004