A007703 Regular primes.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281, 313, 317, 331, 337, 349, 359, 367, 373, 383, 397, 419, 431
Offset: 1
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430.
- H. M. Edwards, Fermat's Last Theorem, Springer, 1977.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 223-227.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- C. K. Caldwell, The Prime Glossary, Regular prime.
- K. Conrad, Fermat's Last Theorem For Regular Primes.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- F. Luca, A. Pizarro-Madariaga, and C. Pomerance, On the counting function of irregular primes, 2014.
- O. A. Ivanova, Regular prime number.
- D. Jao, PlanetMath.org, Regular prime.
- A. L. Robledo, PlanetMath.org, Examples of regular primes.
- Eric Weisstein's World of Mathematics, Regular Prime.
- Bernoulli numbers, irregularity index of primes
Programs
-
Mathematica
s = {}; Do[p = Prime@n; k = 1; While[2k <= p - 3 && Mod[Numerator@BernoulliB[2k], p] != 0, k++ ]; If[2k > p - 3, AppendTo[s, p]], {n, 2, 80}]; s (* Robert G. Wilson v Sep 20 2006 *)
-
PARI
is(p)=forstep(k=2,p-3,2,if(numerator(bernfrac(k))%p==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Feb 25 2014
-
Python
from sympy import prime, isprime, bernoulli def ok(n): for k in range(2, n - 2, 2): if bernoulli(k).as_numer_denom()[0] % n == 0: return 0 return isprime(n) [n for n in range(3, 501) if ok(n)] # Indranil Ghosh, Jun 27 2017, after Charles R Greathouse IV
Extensions
Corrected by Gerard Schildberger, Jun 01 2004
Comments