cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007727 Number of 2n-bead black-white strings with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 2, 4, 18, 64, 250, 900, 3430, 12800, 48600, 184500, 705430, 2703168, 10400598, 40113164, 155117250, 601067520, 2333606218, 9075085776, 35345263798, 137846344000, 538257870990, 2104098258284, 8233430727598, 32247600966144
Offset: 0

Views

Author

Doug Bowman, bowman(AT)math.uiuc.edu

Keywords

Comments

For n>0, a(n) is divisible by n^2 (cf. A268619) and 6*a(n) is divisible by n^3 (cf. A268592). - Max Alekseyev, Feb 07 2016

Crossrefs

Programs

  • Maple
    A007727 := proc(n)
        if n = 0 then
            1;
        else
            add(numtheory[mobius](n/d)*binomial(2*d,d), d =numtheory[divisors](n)) ;
        end if ;
    end proc:
    seq(A007727(n),n=0..10) ; # R. J. Mathar, Nov 10 2021
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 05 2023 *)
  • PARI
    { a(n) = if(n>0,sumdiv(n, d, moebius(n/d)*binomial(2*d, d)),0); }

Formula

For n>0, a(n) = Sum_{d|n} A008683(n/d)*A000984(d).
For n>0, a(n) = 2 * A045630(n).
a(0)=1, a(n) = n * A060165(n) = 2n * A022553(n). - Ralf Stephan, Sep 01 2003

Extensions

Edited by Max Alekseyev, Feb 09 2016