A007754 Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 3, 5, 2, 1, 4, 11, 18, 7, 1, 5, 19, 52, 85, 33, 1, 6, 29, 110, 301, 492, 191, 1, 7, 41, 198, 751, 2055, 3359, 1304, 1, 8, 55, 322, 1555, 5898, 16139, 26380, 10241, 1, 9, 71, 488, 2857, 13797, 52331, 143196, 234061, 90865, 1, 10, 89, 702
Offset: 0
Examples
Array begins: 1 1 1 1 1 1 1 1 ... 1 2 3 4 5 6 7 ... 1 5 11 19 29 41 ... 2 18 52 110 198 ... 7 85 301 751 ...
References
- Email from James Propp, Nov 28 2000.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Formula
a(n, k) = (n+k)*a(n-1, k)-a(n-2, k) with a(0, k)=1 and a(-1, k)=0. - Henry Bottomley, Feb 28 2001
a(n, k) = Pi*(BesselJ(n+k+1, 2)*BesselY(k, 2) - BesselY(n+k+1, 2)*BesselJ(k, 2)). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005
Column asymptotics (i.e. for fixed k and n -> infinity): a(n, k) ~ BesselJ(k, 2)*(n+k)!. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005
Extensions
More terms from Christian G. Bower, Dec 02 2000
Comments