cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007754 Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 2, 1, 4, 11, 18, 7, 1, 5, 19, 52, 85, 33, 1, 6, 29, 110, 301, 492, 191, 1, 7, 41, 198, 751, 2055, 3359, 1304, 1, 8, 55, 322, 1555, 5898, 16139, 26380, 10241, 1, 9, 71, 488, 2857, 13797, 52331, 143196, 234061, 90865, 1, 10, 89, 702
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2000

Keywords

Comments

Let u be a sequence with u(0)=p, u(1)=q, and u(i)^(i+k) = u(i-1)*u(i+1). Then u(n)= q^a(n-1,k)/p^a(n-2,k+1). - Example for k=1, u(5)=q^7/p^18 and for k=2, u(5)=q^85/p^52. - Olivier Gérard, Sep 19 2016

Examples

			Array begins:
  1   1   1   1   1    1    1   1 ...
    1   2   3   4   5    6    7 ...
      1   5  11  19   29   41 ...
        2  18  52  110  198 ...
          7  85  301  751 ...
		

References

Crossrefs

Row 0-3: A000012, A000027(n+1), A028387, A058794-A058796. Columns 0-2: A058797-A058799.
Main diagonal gives A099933.

Formula

a(n, k) = (n+k)*a(n-1, k)-a(n-2, k) with a(0, k)=1 and a(-1, k)=0. - Henry Bottomley, Feb 28 2001
a(n, k) = Pi*(BesselJ(n+k+1, 2)*BesselY(k, 2) - BesselY(n+k+1, 2)*BesselJ(k, 2)). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005
Column asymptotics (i.e. for fixed k and n -> infinity): a(n, k) ~ BesselJ(k, 2)*(n+k)!. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005

Extensions

More terms from Christian G. Bower, Dec 02 2000