A007779 Coefficients of asymptotic expansion of Ramanujan false theta series.
1, 1, 1, 2, 5, 17, 72, 367, 2179, 14750, 112023, 942879, 8708912, 87563937, 951933849, 11125383714, 139092236301, 1852257089937, 26173848663000, 391153031777263, 6163682285356171, 102136840106457790, 1775499429402739247, 32307194057014483391
Offset: 0
References
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 545.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- W. F. Galway, An Asymptotic Expansion of Ramanujan, in Number Theory (Fifth Conference of Canadian Number Theory Assoc., August, 1996, Carleton University), pp. 107-110, ed. R. Gupta and K. S. Williams, Amer. Math. Soc., 1999.
- R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006.
- R. P. Stanley, Permutations
Programs
-
Mathematica
Table[SeriesCoefficient[(1-x^2)^(-1/4)*(1+x)^(1/2)*Sum[(-1)^k*EulerE[2*k]*(1/4*Log[(1+x)/(1-x)])^k/k!,{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 29 2014 *)
Formula
Sum_{n>=0} a(n)*x^n = (1-x^2)^(-1/4)*sqrt(1+x)*Sum_{k>=0} E_{2k} v^k/k!, where E_{2k} is an Euler number and v = (1/4)*log((1+x)/(1-x)). - Richard Stanley, Jan 22 2006
Berndt gives an explicit g.f. on page 547.
Extensions
Edited by Ralf Stephan, May 08 2007
Comments