cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129815 Number of reverse alternating fixed-point-free permutations on n letters.

Original entry on oeis.org

0, 0, 1, 2, 6, 22, 102, 506, 2952, 18502, 131112, 991226, 8271792, 73176262, 703077552, 7121578106, 77437418112, 883521487942, 10726837356672, 136104948161786, 1825110309733632
Offset: 1

Views

Author

Vladeta Jovovic, May 20 2007

Keywords

Comments

From Emeric Deutsch, Aug 06 2009: (Start)
Reverse alternating permutations are called also up-down permutations.
a(n) is also the number of reverse alternating permutations having exactly 1 fixed point (see the Stanley reference). Example: a(4)=2 because we have 1423 and 2314.
(End)

Examples

			a(4)=2 because we have 3412 and 2413. [_Emeric Deutsch_, Aug 06 2009]
		

Crossrefs

Formula

a(2n-1) = A129817(2n-1). [Emeric Deutsch, Aug 06 2009]

Extensions

a(21) from Alois P. Heinz, Jun 11 2015

A129817 Number of alternating fixed-point-free permutations on n letters.

Original entry on oeis.org

1, 0, 1, 1, 2, 6, 24, 102, 528, 2952, 19008, 131112, 1009728, 8271792, 74167488, 703077552, 7194754368, 77437418112, 890643066048, 10726837356672, 136988469649728, 1825110309733632, 25625477737660608, 374159217291201792, 5728724202727533888, 90961591766739121152, 1508303564683904357568, 25874345243221479539712, 461932949559928514787648, 8513674175717969079785472, 162818666826944872460200128
Offset: 0

Views

Author

Vladeta Jovovic, May 20 2007

Keywords

Comments

For n > 0, a(2n-1) = A129815(2n-1); for n > 1, a(2n) = A129815(2n) + A129815(2n-2). - Vladimir Shevelev, Apr 29 2008
We conjecture that for n >= 3, A000111(2n)/a(2n) < e < A000111(2n)/A129815(2n), so that A000111(2n)/a(2n) increases while A000111(2n)/A129815(2n) decreases (and both quotients tend to e). - Vladimir Shevelev, Apr 29 2008
From Emeric Deutsch, Aug 06 2009: (Start)
Alternating permutations are also called down-up permutations.
a(n) is also the number of alternating permutations of {1,2,...,n} having exactly 1 fixed point (see the Richard Stanley reference). Example: a(4)=2 because we have 4132 and 3241.
(End)

Examples

			a(4) = 2 because we have 3142 and 2143. - _Emeric Deutsch_, Aug 06 2009
		

Crossrefs

Column k=0 of A162979.

Programs

  • Mathematica
    nmax = 30;
    fo = Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1 - e*t);
    fe = Sqrt[(1+t^2)/(1+q^2*t^2)]*Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1-e*t);
    Q[n_] := If [OddQ[n] ,  SeriesCoefficient[fo, {t, 0, n}],  SeriesCoefficient[fe, {t, 0, n}]] // Expand;
    b[n_] :=  n!*SeriesCoefficient[Sec[x] + Tan[x], {x, 0, n}];
    P[n_] := (Q[n] /. e^k_Integer :> b[k]) /. e :> b[1] // Expand;
    a[n_] := Coefficient[P[n], q, 0];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, nmax}] (* Jean-François Alcover, Jul 24 2018 *)

Formula

a(n) = A162979(n,0). - Alois P. Heinz, Nov 24 2017

Extensions

a(21) from Alois P. Heinz, Nov 06 2015
a(0)=1 prepended by Alois P. Heinz, Nov 24 2017
a(22)..a(30) from Jean-François Alcover, Jul 24 2018

A115455 a(n) = number of reverse alternating fixed-point-free involutions w on 1,2,...,2n, i.e., w(1) < w(2) > w(3) < w(4) > ... < w(2n), w^2=1 and w(i) != i for all i.

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 59, 308, 1871, 12879, 99144, 843735, 7865177, 79698760, 872235089, 10253148625, 128839087676, 1723418002261, 24450430660739, 366702601116524, 5796979684239647, 96339860422218143, 1679159568980521104, 30628034488033962287
Offset: 0

Views

Author

Richard Stanley, Jan 22 2006

Keywords

Examples

			a(3)=1 because there is one reverse alternating fixed-point-free involution on 1,...,6, viz., 351624.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-x^2)^(-1/4)*(1+x)^(-1/2)*Sum[(-1)^k*EulerE[2*k]*(1/4*Log[(1+x)/(1-x)])^k/k!,{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 29 2014 *)

Formula

G.f.: (1-x^2)^{-1/4} (1+x)^{-1/2} Sum_{k>=0} E_{2k} v^k/k!, where E_{2k} is an Euler number and v = (1/4)*log((1+x)/(1-x)).
Showing 1-3 of 3 results.