A129815
Number of reverse alternating fixed-point-free permutations on n letters.
Original entry on oeis.org
0, 0, 1, 2, 6, 22, 102, 506, 2952, 18502, 131112, 991226, 8271792, 73176262, 703077552, 7121578106, 77437418112, 883521487942, 10726837356672, 136104948161786, 1825110309733632
Offset: 1
a(4)=2 because we have 3412 and 2413. [_Emeric Deutsch_, Aug 06 2009]
A129817
Number of alternating fixed-point-free permutations on n letters.
Original entry on oeis.org
1, 0, 1, 1, 2, 6, 24, 102, 528, 2952, 19008, 131112, 1009728, 8271792, 74167488, 703077552, 7194754368, 77437418112, 890643066048, 10726837356672, 136988469649728, 1825110309733632, 25625477737660608, 374159217291201792, 5728724202727533888, 90961591766739121152, 1508303564683904357568, 25874345243221479539712, 461932949559928514787648, 8513674175717969079785472, 162818666826944872460200128
Offset: 0
a(4) = 2 because we have 3142 and 2143. - _Emeric Deutsch_, Aug 06 2009
-
nmax = 30;
fo = Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1 - e*t);
fe = Sqrt[(1+t^2)/(1+q^2*t^2)]*Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1-e*t);
Q[n_] := If [OddQ[n] , SeriesCoefficient[fo, {t, 0, n}], SeriesCoefficient[fe, {t, 0, n}]] // Expand;
b[n_] := n!*SeriesCoefficient[Sec[x] + Tan[x], {x, 0, n}];
P[n_] := (Q[n] /. e^k_Integer :> b[k]) /. e :> b[1] // Expand;
a[n_] := Coefficient[P[n], q, 0];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, nmax}] (* Jean-François Alcover, Jul 24 2018 *)
A115455
a(n) = number of reverse alternating fixed-point-free involutions w on 1,2,...,2n, i.e., w(1) < w(2) > w(3) < w(4) > ... < w(2n), w^2=1 and w(i) != i for all i.
Original entry on oeis.org
1, 0, 1, 1, 4, 13, 59, 308, 1871, 12879, 99144, 843735, 7865177, 79698760, 872235089, 10253148625, 128839087676, 1723418002261, 24450430660739, 366702601116524, 5796979684239647, 96339860422218143, 1679159568980521104, 30628034488033962287
Offset: 0
a(3)=1 because there is one reverse alternating fixed-point-free involution on 1,...,6, viz., 351624.
-
Table[SeriesCoefficient[(1-x^2)^(-1/4)*(1+x)^(-1/2)*Sum[(-1)^k*EulerE[2*k]*(1/4*Log[(1+x)/(1-x)])^k/k!,{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 29 2014 *)
Showing 1-3 of 3 results.
Comments