A007782 Number of factors in the infinite word formed by the Kolakoski sequence A000002.
1, 2, 4, 6, 10, 14, 18, 26, 34, 42, 50, 62, 78, 94, 110, 126, 142, 162, 186, 218, 250, 282, 314, 346, 378, 410, 446, 486, 534, 590, 654, 718, 782, 846, 910, 974, 1038, 1102, 1166, 1234, 1302, 1378, 1458, 1554, 1658, 1774, 1898, 2026, 2154, 2282, 2410, 2538, 2666
Offset: 0
Examples
For length 3 only the strings 112, 121, 211, 221, 212, 122 occur, so a(3) = 6. For length 4 only the 10 strings 1121, 1122, 1211, 1212, 1221, 2112, 2121, 2122, 2211, 2212 occur.
References
- M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.
Links
- D. Wilson, Table of n, a(n) for n = 0..100.
Crossrefs
Cf. A000002.
Programs
-
Mathematica
nMax = 52; A007782[m_] := A007782[m] = (kolak = {1, 2, 2}; For[n = 3, n <= m, n++, For[k = 1, k <= kolak[[n]], k++, AppendTo[ kolak, 1 + Mod[n - 1, 2]]]]; factors[n_] := Table[ kolak[[k ;; k + n - 1]], {k, 1, Length[kolak] - n + 1}]; Table[ factors[n] // Union // Length, {n, 0, nMax}]); A007782[nMax]; A007782[m = 2*nMax]; While[ A007782[m] != A007782[m/2], m = 2*m]; A007782[m] (* Jean-François Alcover, Jul 24 2013 *)
Extensions
Additional comments from Michael Baake (mbaake(AT)pion09.tphys.physik.uni-tuebingen.de), Feb 19 2001.
Comments