A007818 Maximal number of bonds joining n nodes in simple cubic lattice.
0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 21, 23, 25, 28, 30, 33, 34, 36, 38, 41, 43, 46, 48, 51, 54, 55, 57, 59, 62, 64, 67, 69, 72, 75, 76, 78, 80, 83, 85, 88, 90, 93, 96, 98, 101, 104, 105, 107, 109, 112, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141
Offset: 1
Keywords
Links
- Martin Y. Veillette, Table of n, a(n) for n = 1..500
- G. Agnarsson, On the number of hypercubic bipartitions of an integer, arXiv preprint arXiv:1106.4997 [math.CO], 2011.
- G. Agnarsson, Induced subgraphs of hypercubes, arXiv preprint arXiv:1112.3015 [math.CO], 2011.
- G. Agnarsson and K. Lauria, Extremal subgraphs of the d-dimensional grid graph, arXiv preprint arXiv:1302.6517 [math.CO], 2013.
Crossrefs
Cf. A193416.
Programs
-
Mathematica
qmax = 2000; sequence = FoldList[Plus, 0, q = Table[3, {qmax}]; q[[Flatten[ Table[Table[{j^3 + i (i - 1), j^3 + i^2, j^2 (j + 1) + i (i + 1), j^2 (j + 1) + i^2, (j + 1)^2 j + i (i + 1), (j + 1)^2 j + i^2}, {i, 1, j}], {j, 0, (qmax)^(1/3) - 1}]]]]--; q[[Flatten[ Table[{j^3, j^2 (j + 1), (j + 1)^2 j}, {j, 1, (qmax)^(1/3) - 1}]]]]--; q] (* Martin Y. Veillette, Jul 19 2011 *)
Formula
a(n) = 3*n - A193416(n)/2. - Mohammed Yaseen, Aug 08 2021
Comments