cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007829 From random walks on complete directed triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 8, 28, 44, 100, 162, 318, 514, 942, 1518, 2672, 4302, 7380, 11882, 20040, 32276, 53810, 86710, 143396, 231204, 380152, 613286, 1004188, 1620864, 2645928, 4272744, 6959326, 11242518, 18281222, 29542078, 47978666, 77552928, 125836374, 203445784
Offset: 0

Views

Author

Eric Bussian [ ebussian(AT)math.gatech.edu ]

Keywords

Crossrefs

Programs

  • Maple
    m:=35; S:=series(2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2020
  • Mathematica
    b[n_]:= b[n]= If[n==0, 1, If[n<3, 0, b[n-2] +b[n-3]]]; Table[2*(2 +Fibonacci[n+2] -2^Floor[n/2] -p[n+7] -p[n+5]), {n,0,35}] (* G. C. Greubel, Mar 11 2020 *)
  • Sage
    def A007829_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2*x^5*(3-2*x-3*x^2)/((1-x)*(1-x-x^2)*(1-2*x^2)*(1-x^2-x^3)) ).list()
    A007829_list(35) # G. C. Greubel, Mar 11 2020

Formula

From Colin Barker, Feb 03 2018: (Start)
G.f.: 2*x^5*(3 - 2*x - 3*x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x^2 - x^3)).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 4*a(n-4) + 5*a(n-5) + 5*a(n-6) - 2*a(n-7) - 2*a(n-8) for n>7.
(End)
From G. C. Greubel, Mar 11 2020: (Start)
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - A084338(n+2)).
a(n) = 2*(2 + Fibonacci(n+2) - 2^floor(n/2) - b(n+7) - b(n+5)), where b(n) = A000931(n). (End)