cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007835 Number of unordered sets of pairs (in-degree, out-degree) for nodes of directed trees on n unlabeled nodes (the edges are directed in arbitrary directions, the tree is unrooted).

Original entry on oeis.org

1, 1, 3, 8, 21, 52, 124, 284, 629, 1352, 2829, 5777, 11544
Offset: 1

Views

Author

Philippe Aubry (philippe.aubry(AT)oncfs.gouv.fr), Oct 02 1994

Keywords

Comments

The trees in question might also be called unlabeled acyclic connected digraphs, totally acyclic digraphs or acyclic posets.
Comments from Dean Hickerson, May 17 2006: For each directed tree with n nodes, write down the set of pairs (in-degree, out-degree) that occur in the tree. Then count how many different sets you get that way.
For n=3 there are 3 such sets, namely: O-->O-->O {(0,1), (1,0), (1,1)}, O-->O<--O {(0,1), (2,0)}, O<--O-->O {(1,0), (0,2)}.
For n=4 there are 8 directed trees:
O->-O->-O->-O, O->-O->-O-<-O, O-<-O-<-O->-O, O->-O-<-O->-O,
......................
O .... O .... O .... O
| .... | .... | .... |
V .... ^ .... V .... ^
| .... | .... | .... |
O-<--O O->--O O-<--O O->--O
| .... | .... | .... |
^ .... V .... V .... ^
| .... | .... | .... |
O .... O .... O .... O
(see A000238 for the number of them with n nodes). It turns out that all of these give different sets, so a(4)=8.
For n=5 there are 27 directed trees. The following groups of trees give the same set:
O-->O<--O<--O<--O {(0,1), (0,1), (2,0), (1,1), (1,1)}
O-->O-->O<--O<--O {(0,1), (0,1), (2,0), (1,1), (1,1)}
------------------------------------------------------------
O<--O-->O-->O-->O {(1,0), (1,0), (0,2), (1,1), (1,1)}
O<--O<--O-->O-->O {(1,0), (1,0), (0,2), (1,1), (1,1)}
------------------------------------------------------------
O-->O<--O<--O-->O {(0,1), (1,0), (2,0), (1,1), (0,2)}
O-->O-->O<--O-->O {(0,1), (1,0), (2,0), (1,1), (0,2)}
O-->O<--O-->O-->O {(0,1), (1,0), (2,0), (1,1), (0,2)}
------------------------------------------------------------
............O
............|
............v
....O<--O<--O-->O {(0,1), (1,0), (1,0), (1,1), (1,2)}
.............
............O
............^
............|
....O-->O-->O-->O {(0,1), (1,0), (1,0), (1,1), (1,2)}
------------------------------------------------------------
............O
............^
............|
....O-->O-->O<--O {(0,1), (0,1), (1,0), (1,1), (2,1)}
.............
............O
............|
............v
....O<--O<--O<--O {(0,1), (0,1), (1,0), (1,1), (2,1)}
------------------------------------------------------------
There are no other duplications, so a(5)=23, as claimed.

Crossrefs

Cf. A000238.

Extensions

Edited by N. J. A. Sloane, May 17 2006
a(12)-a(13) from and example in comment clarified by Sean A. Irvine, Feb 04 2018