cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007836 Springer numbers associated with symplectic group.

Original entry on oeis.org

1, 1, 1, 5, 23, 151, 1141, 10205, 103823, 1190191, 15151981, 212222405, 3242472023, 53670028231, 956685677221, 18271360434605, 372221031054623, 8056751598834271, 184647141575344861, 4466900836910758805
Offset: 0

Views

Author

Keywords

Comments

Comments from F. Chapoton, Oct 30 2009: To compute this sequence, I used something similar to the Boustrophedon definition of the Euler numbers, but with two triangles instead of one. This is described (page 94) in Arnold's article in "Leçons de mathématiques d'aujourd'hui, volume 1" Editions Cassini. This is very similar to A001586, except that the initial conditions ( (0,1) at top of the two triangles ) are exchanged.

References

  • V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
  • V. I. Arnold, Nombres d'Euler, de Bernoulli et de Springer pour les groupes de Coxeter et les espaces de morsification : le calcul des serpents, in "Leçons de mathématiques d'aujourd'hui, volume 1", Editions Cassini.

Crossrefs

Programs

  • Mathematica
    p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1+u^2] // Expand; p[-1, u_] = 1; t[n_, k_] := t[n, k] = k*t[n-1, k-1]+(k+1)*t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[-1, ] = 0; q[n_, u_] := Sum[t[n, k]*u^k, {k, 0, n}]; a[n_] := p[n, 1]-q[n, 1]; a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 05 2014 *)
    nmax = 20; CoefficientList[Series[1 + (Sin[x] + Cos[x] - 1) / (Cos[x] - Sin[x]), {x, 0, nmax}], x] * Range[0,nmax]! (* Vaclav Kotesovec, Dec 08 2020 *)

Formula

a(n) = P_n(1) - Q_n(1) (see A155100 and A104035), defining Q_{-1} = 0. Cf. A156142.
From Vaclav Kotesovec, Dec 08 2020: (Start)
E.g.f.: (2*cos(x) - 1) / (cos(x) - sin(x)).
a(n) ~ (2 - sqrt(2)) * 2^(2*n + 3/2) * n^(n + 1/2) / (Pi^(n + 1/2) * exp(n)). (End)

Extensions

More terms from F. Chapoton, Oct 30 2009