A007836 Springer numbers associated with symplectic group.
1, 1, 1, 5, 23, 151, 1141, 10205, 103823, 1190191, 15151981, 212222405, 3242472023, 53670028231, 956685677221, 18271360434605, 372221031054623, 8056751598834271, 184647141575344861, 4466900836910758805
Offset: 0
References
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
- V. I. Arnold, Nombres d'Euler, de Bernoulli et de Springer pour les groupes de Coxeter et les espaces de morsification : le calcul des serpents, in "Leçons de mathématiques d'aujourd'hui, volume 1", Editions Cassini.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p.
- M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
Programs
-
Mathematica
p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1+u^2] // Expand; p[-1, u_] = 1; t[n_, k_] := t[n, k] = k*t[n-1, k-1]+(k+1)*t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[-1, ] = 0; q[n_, u_] := Sum[t[n, k]*u^k, {k, 0, n}]; a[n_] := p[n, 1]-q[n, 1]; a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 05 2014 *) nmax = 20; CoefficientList[Series[1 + (Sin[x] + Cos[x] - 1) / (Cos[x] - Sin[x]), {x, 0, nmax}], x] * Range[0,nmax]! (* Vaclav Kotesovec, Dec 08 2020 *)
Formula
From Vaclav Kotesovec, Dec 08 2020: (Start)
E.g.f.: (2*cos(x) - 1) / (cos(x) - sin(x)).
a(n) ~ (2 - sqrt(2)) * 2^(2*n + 3/2) * n^(n + 1/2) / (Pi^(n + 1/2) * exp(n)). (End)
Extensions
More terms from F. Chapoton, Oct 30 2009
Comments