A007844 Least positive integer k for which 3^n divides k!.
1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81, 84, 87, 90, 90, 93, 96, 99, 99, 102, 105, 108, 108, 108, 111, 114, 117, 117, 120, 123, 126, 126, 129, 132, 135, 135, 135
Offset: 0
Keywords
References
- H. Ibstedt, Smarandache Primitive Numbers, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 216-229.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- F. Smarandache, Only Problems, Not Solutions!
Programs
-
Mathematica
Array[Block[{k = 1}, While[Mod[k!, 3^#] != 0, k++]; k] &, 67, 0] (* Michael De Vlieger, Dec 29 2019 *)
-
PARI
a(n) = {k = 1; while (valuation(k!, 3) < n, k++); k;} \\ Michel Marcus, Aug 19 2013
-
PARI
apply( A007844(n)={my(s=sumdigits(n*=2,3)\2); n-=n%3; while(s>0, s-=valuation(n+=3,3)); n+!n}, [0..99]) \\ M. F. Hasler, Dec 27 2019
Comments