cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A087783 Array T(n,k) (n >= 1, k >= 1) read by antidiagonals, giving number of ways of arranging the numbers 1 ... mn into an m X n array so there is exactly one local maximum.

Original entry on oeis.org

1, 2, 2, 4, 16, 4, 8, 208, 208, 8, 16, 3584, 29568, 3584, 16, 32, 76544, 7452704, 7452704, 76544, 32, 64, 1947648, 2941306368, 35704394880, 2941306368, 1947648, 64, 128, 57477120, 1683453629440, 331333877743200, 331333877743200, 1683453629440, 57477120, 128, 256, 1929117696, 1323082429842432, 5338455334819710720, 88366736882654697600, 5338455334819710720, 1323082429842432, 1929117696, 256, 512, 72545402880, 1370418864769445888, 137813651152462288749440
Offset: 1

Views

Author

R. H. Hardin, Oct 25 2003

Keywords

Examples

			Array begins:
1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,...
2,16,208,3584,76544,1947648,57477120,1929117696...
4,208,29568,7452704,2941306368,1683453629440...
8,3584,7452704,35704394880,331333877743200,...
16,76544,2941306368,331333877743200,...
		

Crossrefs

Cf. A000079 (k = 1 or n = 1), A087518 (n=k). A087923-A087932 give rows 2 through 11. Cf. A007846.

Formula

T(n, k) = T(k, n). T(n, 1) = 2^(n-1) (see A000079).

A087518 Number of arrangements of 1..n^2 in n X n array with exactly one local maximum.

Original entry on oeis.org

1, 16, 29568, 35704394880, 88366736882654697600
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2003

Keywords

Comments

Neighbors of a cell are only considered in the X and Y directions.
Number of ways to dig an n X n hole where each cell is at a different depth and water will collect in just one puddle.
Computed using a C program, brute force enumeration except using a cache of old results to cut off the search tree. For many related problems however, R. H. Hardin has coded them in S/R (which is COSPAN's language).

Examples

			For n=2, 12 has only one local max., whereas 13 has two and is excluded.
........ 34 ................................ 42
		

Crossrefs

For the same problem with an n X 1 array see A000079. With no shape constraint, see A007846. Cf. A087519. Main diagonal of A087783.

A087923 Number of ways of arranging the numbers 1 ... 2n into a 2 X n array so there is exactly one local maximum.

Original entry on oeis.org

2, 16, 208, 3584, 76544, 1947648, 57477120, 1929117696, 72545402880, 3020819005440, 137959904378880, 6855868809216000, 368270708268072960, 21262037565623500800, 1312956239068318924800, 86347473137975269785600, 6025205587810776514560000, 444600907757468888806195200
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Comments

Also the number of random walk labelings of the grid graph P_2 X P_n. - Sela Fried, Apr 14 2023

Crossrefs

Row 2 of A087783.
Cf. A007846.

Programs

  • Maple
    a := n -> 2*((2*n - 2)! / doublefactorial(2*n - 1)) * add((2*k*(n - k + 1) - 1) * binomial(2*n, 2*k) / binomial(n, k), k = 1..n):
    seq(a(n), n = 1..18); # Peter Luschny, Apr 17 2023
  • PARI
    a(n)={2*sum(k=1, n, (2*n-2)!*(2*k*(n-k+1)-1)*2^n*k!*(n-k)!/((2*k)!*(2*n-2*k)!))} \\ Andrew Howroyd, Feb 26 2020

Formula

a(n) = 2*Sum_{k=1..n} (2*n-2)!*(2*k*(n-k+1)-1)/((2*k-1)!!*(2*n-2*k-1)!!). - Maximilian Göbel, Feb 26 2020
From Sela Fried, Apr 13 2023: (Start)
a(n) = 2^(n - 1)*(n - 1)!*Sum_{k=0..n-1} (n*binomial(2*(n - 1), 2*k) + binomial(2*n - 1, 2*k))/binomial(n - 1,k).
E.g.f.: ((1 - 2*x)^2*arctan(2*x/sqrt(1 - 4*x)) + 2*x*sqrt(1 - 4*x))/(2*(sqrt(1 - 4*x))^3).
(End)
a(n) ~ Pi * 2^(2*n - 5/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Apr 13 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Feb 26 2020

A087932 Number of ways of arranging the numbers 1 ... 11n into an 11 X n array so there is exactly one local maximum.

Original entry on oeis.org

1024, 137959904378880, 5972307516078119199647692800
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.

A261834 Number of n-step adjacent expansions on the hexagonal (honeycomb) lattice. Holes allowed.

Original entry on oeis.org

1, 6, 48, 468, 5328, 68928, 994464, 15781920, 272594160, 5081825664
Offset: 0

Views

Author

Francois Alcover, Mar 24 2016

Keywords

Comments

Initially only one cell C[0] is occupied on the lattice.
Then, for each i of (1..n), C[i] is chosen among the free cells adjacent to at least one of (C[0],...,C[i-1]).
a(n) is the number of distinct (C[1],...,C[n]).

Examples

			a(1) = 6 because a point has 6 neighbors on the hexagonal grid.
a(2) = 48 = a(1) * 8 because a two-cell group has 8 free neighbors.
		

Crossrefs

Cf. A007846 (same principle but on the rectangular lattice).
Cf. A001334.

Extensions

More terms from Francois Alcover, Apr 29 2016
Rephrasing and culling comments from Francois Alcover, Apr 29 2016
Added crossref to A007846 from Francois Alcover, May 01 2016

A087924 Number of ways of arranging the numbers 1 ... 3n into a 3 X n array so there is exactly one local maximum.

Original entry on oeis.org

4, 208, 29568, 7452704, 2941306368, 1683453629440, 1323082429842432, 1370418864769445888, 1811764909105311267840, 2980039854936078219167744, 5972307516078119199647692800
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.

A087925 Number of ways of arranging the numbers 1 ... 4n into a 4 X n array so there is exactly one local maximum.

Original entry on oeis.org

8, 3584, 7452704, 35704394880, 331333877743200, 5338455334819710720, 137813651152462288749440, 5359457796069778002771306240, 299167849199075018703047460201600
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.

A087926 Number of ways of arranging the numbers 1 ... 5n into a 5 X n array so there is exactly one local maximum.

Original entry on oeis.org

16, 76544, 2941306368, 331333877743200, 88366736882654697600, 48653237600359922073441120, 49992325433734834899948931370880
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.

A087927 Number of ways of arranging the numbers 1 ... 6n into a 6 X n array so there is exactly one local maximum.

Original entry on oeis.org

32, 1947648, 1683453629440, 5338455334819710720, 48653237600359922073441120, 1080582891996915763252912268789760
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.

A087928 Number of ways of arranging the numbers 1 ... 7n into a 7 X n array so there is exactly one local maximum.

Original entry on oeis.org

64, 57477120, 1323082429842432, 137813651152462288749440, 49992325433734834899948931370880
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2003

Keywords

Crossrefs

A row of the array in A087783. Cf. A007846.
Showing 1-10 of 13 results. Next