cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007885 Numbers n such that balanced sequences exist with n distinct elements.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 317, 347, 349, 359, 367, 373, 379, 383, 389, 419, 421, 443, 461, 463, 467
Offset: 1

Views

Author

Keywords

Comments

A nondecreasing sequence a_1, ..., a_n is called balanced if the n-1 quantities D(a_1,...,a_k)+D(a_(k+1),...,a_n) (1<=k<=n-1) are all equal, where D(a_1,...,a_k) is the sum of the absolute deviations of the a's from their median. Up to affine equivalence, there's a unique balanced sequence of any given length.
n is in the sequence iff n=1, 2, or 4, or n is prime and the multiplicative group of integers mod n is generated by -1 and 2.
1, 2, 4, and primes p such that either +2 or -2 (or both) are primitive roots mod p. - Joerg Arndt, Jun 03 2012

Examples

			n=5 is in the sequence, since 0,2,3,4,6 is balanced. n=6 is not because every balanced sequence of length 6 is affinely equivalent to 0,1,2,2,3,4.
		

Programs

  • Mathematica
    o2[n_] := MultiplicativeOrder[2, n]; For[n=1, True, n++, If[Mod[4, n]==0||(PrimeQ[n]&&(o2[n]==n-1|| (o2[n]==(n-1)/2&&Mod[n, 4]==3))), Print[n]]]
  • PARI
    is(n)=n<6 || (isprime(n) && (znorder(Mod(2,n))==n-1 || znorder(Mod(-2,n))==n-1)) \\ Charles R Greathouse IV, Nov 21 2014

Extensions

More terms and additional comments from Dean Hickerson, Sep 20 2001