cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007896 Psi_c(n), where Product_{k>1} 1/(1-1/k^s)^phi(k) = Sum_{k>0} psi_c(k)/k^s.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 7, 9, 8, 10, 12, 12, 12, 16, 18, 16, 19, 18, 24, 24, 20, 22, 32, 30, 24, 34, 36, 28, 40, 30, 42, 40, 32, 48, 60, 36, 36, 48, 64, 40, 60, 42, 60, 76, 44, 46, 86, 63, 66, 64, 72, 52, 82, 80, 96, 72, 56, 58, 128, 60, 60, 114, 104, 96, 100
Offset: 1

Views

Author

Felix Weinstein (wain(AT)ana.unibe.ch)

Keywords

Comments

Phi(k) is the Euler totient function A000010.

Examples

			The left-hand side (a Dirichlet generating function) is
1/((1-1/2^s)*(1-1/3^s)^2*(1-1/4^s)^2*(1-1/5^s)^4*(1-1/6^s)^2*(1-1/7^s)^6* ...)
= 1 + 1/2^s + 2/3^s + 3/4^s + 4/5^s + 4/6^s + 6/7^s + 7/8^s + 9/9^s + ...,
whose coefficients are 1, 1, 2, 3, 4, 4, 6, 7, 9, ... . - _N. J. A. Sloane_, May 26 2014
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 7*x^8 + 9*x^9 + ...
		

References

  • Felix Weinstein, The Fibonacci Partitions, preprint, 1995

Crossrefs

Programs

  • Mathematica
    dircon[v_, w_] := Module[{lv = Length[v], lw = Length[w], fv, fw}, fv[n_] := If[n <= lv, v[[n]], 0]; fw[n_] := If[n <= lw, w[[n]], 0]; Table[ DirichletConvolve[fv[n], fw[n], n, m], {m, Min[lv, lw]}]];
    a[n_] := Module[{A, v, w, m}, If[n<1, 0, v = Table[Boole[k == 1], {k, n}]; For[k = 2, k <= n, k++, m = Length[IntegerDigits[n, k]] - 1; A = (1 - x)^-EulerPhi[k] + x*O[x]^m // Normal; w = Table[0, {n}]; For[i = 0, i <= m, i++, w[[k^i]] = Coefficient[A, x, i]]; v = dircon[v, w]]; v[[n]]]];
    Array[a, 66] (* Jean-François Alcover, Nov 12 2018, from PARI *)
  • PARI
    {a(n) = my(A, v, w, m); if( n<1, 0, v = vector(n, k, k==1); for(k=2, n, m = #digits(n, k) - 1; A = (1 - x)^ -eulerphi(k) + x * O(x^m); w = vector(n); for(i=0, m, w[k^i] = polcoeff(A, i)); v = dirmul(v, w)); v[n])}; /* Michael Somos, May 26 2014 */

Extensions

Definition corrected by Felix Weinstein (wain(AT)ana.unibe.ch), May 14 2014