A007924 The number n written using the greedy algorithm in the base where the values of the places are 1 and primes.
0, 1, 10, 100, 101, 1000, 1001, 10000, 10001, 10010, 10100, 100000, 100001, 1000000, 1000001, 1000010, 1000100, 10000000, 10000001, 100000000, 100000001, 100000010, 100000100, 1000000000, 1000000001, 1000000010, 1000000100, 1000000101
Offset: 0
Examples
4 = 3 + 1, so a(4) = 101.
References
- S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159-167.
Links
- John Cerkan, Table of n, a(n) for n = 0..5000
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 33.
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 33.
- Florian Luca & Ravindranathan Thangadurai, On an arithmetic function considered by Pillai, Journal de théorie des nombres de Bordeaux 21:3 (2009), pp. 695-701.
- C. Rivera, Prime puzzle 78
- F. Smarandache, Only Problems, Not Solutions!
- F. Smarandache, Definitions, Solved and Unsolved Problems, Conjectures, and Theorems in Number Theory and Geometry, edited by M. Perez, Xiquan Publishing House 2000.
Programs
-
Mathematica
cprime[n_Integer] := (If[n==0, 1, Prime[n]]);gentable[n_Integer] := (m=n; ptable={};While[m!=0, (i=0; While[cprime[i]<=m, i++]; j=0;While[jFrank M Jackson, Jan 06 2012 *)
-
PARI
a(n)=if(n>1, my(p=precprime(n)); 10^primepi(p)+a(n-p), n) \\ Charles R Greathouse IV, Feb 01 2013
Formula
a(n) is the binary representation of b(n) = 2^pi(n) + b(n-p(pi(n))) for n > 0 and a(0) = b(0)= 0, where pi(k) = number of primes <= k (A000720) and p(k) = k-th prime (A008578). - Frank Ellermann, Dec 18 2001
Extensions
Additional references from Felice Russo, Sep 14 2001
Antedated to 1930 by Charles R Greathouse IV, Aug 28 2010
Definition clarified by Frank M Jackson and N. J. A. Sloane, Dec 30 2011
Comments