A007944 a(n) is the largest even number k such that 6, 8, ..., k are sums of 2 of first n odd primes.
6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134, 134, 146, 162, 172, 180, 186, 186, 218, 222, 230, 240, 240, 254, 258, 270, 270, 290, 290, 290, 330, 348, 348, 366, 366, 366, 398, 398, 410, 410, 434, 440, 440, 474, 474, 474, 474, 474, 522
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 20.
- K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 20.
- F. Smarandache, Only Problems, Not Solutions!
Programs
-
Mathematica
Table[tot = Total /@ Tuples[Prime[Range[2, n + 1]], 2]; lim = Last@tot; First[Select[Range[6, lim, 2], ! MemberQ[tot, #] &] - 2, lim], {n, 58}] (* Robert Price, Apr 26 2025 *)
-
PARI
first(n) = {n+=3; my(fnf = 6, pr = primes(n), found = vector(pr[n]), res = vector(n-3), start = 2); for(i = 2, n-2, for(j = start, i, found[(pr[i]+pr[j])>>1] = 1);for(j = fnf>>1, pr[n], if(found[j]==0, fnf = j<<1; break)); while(pr[start] + pr[i+1]
fnf, start--); res[i-1]=fnf-2); res} \\ David A. Corneth, Jul 06 2017
Formula
a(n) << n log n. - Charles R Greathouse IV, Sep 19 2012
More specifically, a(n) <= 2*prime(n+1). On the Goldbach conjecture a(n) >= prime(n+1) + 3. - Charles R Greathouse IV, Dec 09 2014
Extensions
More terms from David W. Wilson