A007960 Positive numbers k with the property that some permutation of the digits of k is a triangular number.
1, 3, 6, 10, 12, 15, 19, 21, 28, 30, 36, 45, 51, 54, 55, 60, 63, 66, 78, 82, 87, 91, 100, 102, 105, 109, 117, 120, 123, 132, 135, 136, 147, 150, 153, 156, 163, 165, 168, 171, 174, 186, 190, 201, 208, 210, 213, 231, 235, 253, 258, 267, 276, 280, 285, 300, 306, 307
Offset: 1
Examples
Contains k=1, k=10, k=100, etc. derived from T=1. Contains k=3, k=30, k=300, etc. derived from T=3. Contains k=15, k=51, k=105, k=150, etc. derived from T=15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- F. Smarandache, Only Problems, Not Solutions!
Crossrefs
Cf. A000217.
Programs
-
Maple
q:= n-> ormap(issqr, map(x-> 1+8*parse(cat(x[])), combinat[permute](convert(n, base, 10)))): select(q, [$1..500])[]; # Alois P. Heinz, Aug 22 2021
-
Mathematica
Select[Range[500], Length[Select[FromDigits/@Permutations[ IntegerDigits[#]], IntegerQ[(Sqrt[1+8#]-1)/2]&]]>0&] (* Marco RipĂ , Nov 07 2022 *)
Extensions
A large number of errors corrected by N. J. A. Sloane, Apr 15 1996
Edited, corrected and extended by R. J. Mathar, Jan 08 2008
Comments