A008013 Coordination sequence occurring in Zeolite Codes AFG, CAN, LIO, LOS.
1, 4, 10, 20, 34, 54, 78, 104, 134, 168, 210, 256, 302, 352, 406, 470, 538, 604, 674, 748, 834, 924, 1010, 1100, 1194, 1302, 1414, 1520, 1630, 1744, 1874, 2008, 2134, 2264, 2398, 2550, 2706, 2852, 3002, 3156, 3330, 3508, 3674, 3844, 4018, 4214, 4414, 4600
Offset: 0
References
- W. M. Meier, D. H. Olson, and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences.
- R. W. Grosse-Kunstleve, G. O. Brunner, and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- Sean A. Irvine, Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane.
- International Zeolite Association, Database of Zeolite Structures.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
Programs
-
Mathematica
CoefficientList[Series[-(x + 1)^3 (x^8 + 3 x^6 + 5 x^4 + 3 x^2 + 1)/((x - 1)^3 (x^4 + x^3 + x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
Formula
a(5m)=52*m^2+2, a(5m+1)=52*m^2+22*m+4, a(5m+2)=52*m^2+42*m+10, a(5m+3)=52*m^2+62*m+20, a(5m+4)=52*m^2+82*m+34. - N. J. A. Sloane
G.f.: -(x+1)^3*(x^8+3*x^6+5*x^4+3*x^2+1) / ((x-1)^3*(x^4+x^3+x^2+x+1)^2). - Colin Barker, Dec 12 2012