cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008014 Coordination sequence T1 for Zeolite Code AFI.

Original entry on oeis.org

1, 4, 11, 21, 35, 53, 77, 105, 137, 172, 212, 256, 305, 357, 413, 473, 539, 609, 683, 760, 842, 928, 1019, 1113, 1211, 1313, 1421, 1533, 1649, 1768, 1892, 2020, 2153, 2289, 2429, 2573, 2723, 2877, 3035, 3196, 3362, 3532, 3707, 3885, 4067, 4253, 4445, 4641
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson, and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.

Programs

  • Mathematica
    CoefficientList[Series[-(x^2 - x + 1) (x^2 + x + 1) (x^8 + 2 x^7 + 3 x^6 + x^5 + x^3 + 3 x^2 + 2 x + 1)/((x - 1)^3 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)

Formula

a(10*m+k) = 210*m^2 + 42*k*m + one of 10 numbers depending on k, 0 <= k < 10. - N. J. A. Sloane
G.f.: -(x^2-x+1)*(x^2+x+1)*(x^8+2*x^7+3*x^6+x^5+x^3+3*x^2+2*x+1) / ((x-1)^3*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 12 2012