cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008311 Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
Offset: 0

Views

Author

Keywords

Comments

This triangle is the right half of Pascal's triangle (A007318), but with each number along the center of Pascal's triangle (except the 1 at the top) divided by 2. - Benjamin Schak (schak(AT)math.upenn.edu), Dec 02 2005
For n>=2 found in A002378, a(n)=A034869(n)/2, for all others a(n)=A034869(n). - R. J. Mathar, May 13 2006

Examples

			Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From _Philippe Deléham_, Mar 09 2013: (Start)
cos(x)      = 1*cos(x),
2*cos(x)^2  = 1 + cos(2x),
4*cos(x)^3  = 3*cos(x) + cos(3x),
8*cos(x)^4  = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

Crossrefs

With zeros: A100257.

Programs

  • Maple
    printf("1,") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d,",binomial(n,(n-j)/2)/2) ; else printf("%d,",binomial(n,(n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
  • Mathematica
    row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
    Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)

Formula

Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013

Extensions

Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006