A008311 Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).
1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
Offset: 0
Examples
Triangle begins: 1; -, 1; 1, -, 1; -, 3, -, 1; 3, -, 4, -, 1; -, 10, -, 5, -, 1; ... From _Philippe Deléham_, Mar 09 2013: (Start) cos(x) = 1*cos(x), 2*cos(x)^2 = 1 + cos(2x), 4*cos(x)^3 = 3*cos(x) + cos(3x), 8*cos(x)^4 = 3 + 4*cos(2x) + cos(4x), 16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5775
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
With zeros: A100257.
Programs
-
Maple
printf("1,") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d,",binomial(n,(n-j)/2)/2) ; else printf("%d,",binomial(n,(n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
-
Mathematica
row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]]; Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)
Formula
Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013
Extensions
Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006
Comments