cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111417 a(n) = A034869(n) - A008311(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 462, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1716, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6435, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24310, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2005

Keywords

Formula

a(n) = A001700(m) if n = (m+1)*(m+2) and a(n) = 0 otherwise.

A100257 Triangle of expansions of 2^(k-1)*x^k in terms of T(n,x), in descending degrees n of T, with T the Chebyshev polynomials.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 0, 3, 1, 0, 5, 0, 10, 0, 1, 0, 6, 0, 15, 0, 10, 1, 0, 7, 0, 21, 0, 35, 0, 1, 0, 8, 0, 28, 0, 56, 0, 35, 1, 0, 9, 0, 36, 0, 84, 0, 126, 0, 1, 0, 10, 0, 45, 0, 120, 0, 210, 0, 126, 1, 0, 11, 0, 55, 0, 165, 0, 330, 0, 462, 0, 1, 0, 12, 0, 66, 0, 220, 0
Offset: 0

Views

Author

Ralf Stephan, Nov 13 2004

Keywords

Examples

			x^0 = T(0,x)
x^1 = T(1,x) + 0T(0,x)
2x^2 = T(2,x) + 0T(1,x) + 1T(0,x)
4x^3 = T(3,x) + 0T(2,x) + 3T(1,x) + 0T(0,x)
8x^4 = T(4,x) + 0T(3,x) + 4T(2,x) + 0T(1,x) + 3T(0,x)
16x^5 = T(5,x) + 0T(4,x) + 5T(3,x) + 0T(2,x) + 10T(1,x) + 0T(0,x)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

Crossrefs

Without zeros: A008311. Row sums are A011782. Cf. A092392.
Diagonals are (with interleaved zeros) twice A001700, A001791, A002054, A002694, A003516, A002696, A030053, A004310, A030054, A004311, A030055, A004312, A030056, A004313.

Programs

  • Mathematica
    a[k_, n_] := If[k == 1, 1, If[EvenQ[n] || k < 0 || n > k, 0, If[n >= k - 1, Binomial[2*Floor[k/2], Floor[k/2]]/2, Binomial[k - 1, Floor[n/2]]]]];
    Table[a[k, n], {k, 1, 13}, {n, 1, k}] // Flatten (* Jean-François Alcover, May 04 2017, translated from PARI *)
  • PARI
    a(k,n)=if(k==1,1,if(n%2==0||k<0||n>k,0,if(n>=k-1,binomial(2*floor(k/2),floor(k/2))/2,binomial(k-1,floor(n/2)))))

A008314 Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 5, 10, 1, 6, 15, 10, 1, 7, 21, 35, 1, 8, 28, 56, 35, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 126, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 1716, 1, 15, 105, 455, 1365, 3003, 5005
Offset: 0

Views

Author

Keywords

Comments

The entry a(0,0) should actually be 1/2.
The row lengths of this array are [1,1,2,2,3,3,...] = A004526.
Row k also counts the binary strings of length k that have 0, 2 up to 2*floor(k/2) 'unmatched symbols'. See contributions by Marc van Leeuwen at the Mathematics Stack Exchange link. - Wouter Meeussen, Apr 17 2013
For n >= 1, T(n,k) is the coefficient of cos((n-2k)x) in the expression for 2^(n-1)*cos(x)^n as a sum of cosines of multiples of x. It is binomial(n,k) if k < n/2, while T(n,n/2) = binomial(n,n/2)/2 if n is even. - Robert Israel, Jul 25 2016

Examples

			[1/2], [1], [1,2/2=1], [1,3], [1,4,6/2=3], [1,5,10], [1,6,15,20/2=10],...
From _Wolfdieter Lang_, Aug 01 2014: (Start)
This irregular triangle begins (even n has falling even T-polynomial indices, odd n has falling odd T-indices):
n\k  1  2   3   4     5     6     7     8 ...
0: 1/2 (but a(0,1) = 1)
1:   1
2:   1  1
3:   1  3
4:   1  4   3
5:   1  5  10
6:   1  6  15  10
7:   1  7  21  35
8:   1  8  28  56    35
9:   1  9  36  84   126
10:  1 10  45 120   210   126
11:  1 11  55 165   330   462
12:  1 12  66 220   495   792   462
13:  1 13  78 286   715  1287  1716
14:  1 14  91 364  1001  2002  3003  1716
15:  1 15 105 455  1365  3003  5005  6435
...
(2*x)^5 = 2*(1*T_5(x) + 5*T_3(x) + 10*T_1(x)),
(2*x)^6 = 2*(1*T_6(x) + 6*T_4(x) + 15*T_3(x) + 10*T_0(x)).
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.

Crossrefs

Bisection triangles: A122366 (odd numbered rows), A127673 (even numbered rows).

Programs

  • Maple
    F:= proc(n) local q;
      q:= combine(2^(n-1)*cos(t)^n,trig);
      if n::even then
         seq(coeff(q,cos((n-2*j)*t)),j=0..n/2-1),eval(q,cos=0)
      else
         seq(coeff(q,cos((n-2*j)*t)),j=0..(n-1)/2)
      fi
    end proc:
    1, seq(F(n),n=1..15); # Robert Israel, Jul 25 2016
  • Mathematica
    Table[(c/@ Range[n,0,-2]) /. Flatten[Solve[Thread[CoefficientList[Expand[1/2*(2*x)^n -Sum[c[k] ChebyshevT[k,x],{k,0,n}]],x]==0]]],{n,16}];
    (* or with combinatorics *)
    match[li:{(1|-1)..}]:= Block[{it=li,rot=0}, While[Length[Union[Join[it,{"(",")"}]]]>3, rot++; it=RotateRight[it //.{a___,1,b___String,-1,c___} ->{a,"(",b,")",c}]]; RotateLeft[it,rot] /. {(1|-1)->0, "("->1,")"->-1}];
    Table[Last/@ Sort@ Tally[Table[Tr[Abs@ match[-1+2*IntegerDigits[n,2]]], {n,2^(k-1), 2^k-1}]], {k,1,16}]; (* Wouter Meeussen, Apr 17 2013 *)

Formula

a(n,k) are the M_3 multinomial numbers A036040 for the partitions with m = 1 and 2 parts (in Abramowitz-Stegun order). - Wolfdieter Lang, Aug 01 2014

Extensions

Name reformulated by Wolfdieter Lang, Aug 01 2014

A127673 One half of even powers of 2*x in terms of Chebyshev's T-polynomials.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 6, 15, 10, 1, 8, 28, 56, 35, 1, 10, 45, 120, 210, 126, 1, 12, 66, 220, 495, 792, 462, 1, 14, 91, 364, 1001, 2002, 3003, 1716, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 6435, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 24310, 1, 20, 190
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

See A122366 for one half of odd powers of 2*x in terms of Chebyshev's T-polynomials.
This is, for n >= 1, the left half of Pascal's triangle for even rows with the central coefficients divided by 2.
The signed version of this triangle, b(n,k) := a(n,k)*(-1)^(n-k), appears in the formula (1/2)*(2*sin(phi))^(2*n) = (Sum_{k=0..n-1} b(n,k)*cos(2*(n-k)*phi)) + a(n,n).
Correspondingly, (1/2)*(4*(1-x^2))^n = (Sum_{k=0..n-1} b(n,k)*T(2*(n-k),x)) + a(n,n).
The proofs follow from Euler's formula 2*x = 2*cos(phi) = exp(i*phi) + exp(-i*phi) or 2*sqrt(1-x^2) = 2*sin(phi) = (exp(i*phi) - exp(-i*phi))/i and the binomial formula.

Examples

			[1/2];
[ 1, 1];
[ 1, 4,  3];
[ 1, 6, 15, 10];
[ 1, 8, 28, 56, 35];
...
Row n=3: [1, 6, 15, 20/2 = 10] appears in ((2*x)^6)/2 = 1*T(6,x) + 6*T(4,x) + 15*T(2,x) + 10.
Row n=3: [1, 6, 15, 20/2 = 10] appears in ((2*cos(phi))^6)/2 = 1*cos(6*phi) + 6*cos(4*phi) + 15*cos(2*phi) + 10.
The signed row n=3, [-1, 6, -15, +20/2 = 10], appears in ((4*(1-x^2))^3)/2 = -1*T(6,x) + 6*T(4,x) - 15*T(2,x) + 10).
The signed row n=3, [-1, 6, -15, +20/2 = 10], appears in ((2*sin(phi))^6)/2 = -1*cos(6*phi) + 6*cos(4*phi) - 15*cos(2*phi) + 10.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. pp. 54-55, Ex. 1.5.31.

Crossrefs

Formula

a(n,k) = binomial(2*n,k), k=0..n-1 and a(n,n) = binomial(2*n,n)/2, n >= 1. Instead of a(0,0)=1 one should take 1/2.

A380113 Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0

Views

Author

Peter Luschny, Jan 12 2025

Keywords

Comments

The inverse matrix of A370707 is a rational matrix and the normalization serves to make it a matrix over the integers. Note that the normalization factor A370707(n, n) = FallingFactorial(n, n) * RisingFactorial(n, n) extends A002674 to n = 0.

Examples

			Triangle starts:
  [0] [    1]
  [1] [    1,     1]
  [2] [    3,     4,     1]
  [3] [   10,    15,     6,     1]
  [4] [   35,    56,    28,     8,    1]
  [5] [  126,   210,   120,    45,   10,    1]
  [6] [  462,   792,   495,   220,   66,   12,   1]
  [7] [ 1716,  3003,  2002,  1001,  364,   91,  14,   1]
  [8] [ 6435, 11440,  8008,  4368, 1820,  560, 120,  16,  1]
  [9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
		

Crossrefs

Variant: A094527.
Cf. A370707, A002674, A008311, A088218 and A110556 (column 0), A081294 (row sums), A000007 (alternating row sums), A005810 (central terms).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
    Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • SageMath
    def Trow(n):
        def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
        def w(n): return factorial(n)*rising_factorial(n, n)
        m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
        return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
    for n in range(10): print(Trow(n))

Formula

T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k).
T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n).
Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After Philippe Deléham in A008311).
Showing 1-5 of 5 results.