A008422 Theta series of D*_5 lattice.
1, 0, 0, 0, 10, 32, 0, 0, 40, 0, 0, 0, 80, 160, 0, 0, 90, 0, 0, 0, 112, 320, 0, 0, 240, 0, 0, 0, 320, 480, 0, 0, 200, 0, 0, 0, 250, 800, 0, 0, 560, 0, 0, 0, 560, 992, 0, 0, 400, 0, 0, 0, 560, 1120, 0, 0, 800, 0, 0, 0, 960, 1760, 0, 0, 730, 0, 0, 0, 480, 1920, 0, 0, 1240, 0, 0, 0, 1520, 1920
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120, Eq. 96.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..800
- G. Nebe and N. J. A. Sloane, Home page for this lattice
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
terms = 78; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^4]^5 + (2*q*psi[q^8])^5 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
-
PARI
N=66; q='q+O('q^N); T3(q) = eta(q^2)^5 / ( eta(q)^2 * eta(q^4)^2 ); T2(q) = eta(q^4)^2 / eta(q^2); Vec( T3(q^4)^5 + (2 * q * T2(q^4))^5 ) \\ Joerg Arndt, Mar 30 2018
Formula
Theta series in terms of Jacobi theta series: (theta_2)^5 + (theta_3)^5.
Expansion of phi(q^4)^5 + ( 2 * q * psi(q^8) )^5 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 17 2007
Comments