cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008422 Theta series of D*_5 lattice.

Original entry on oeis.org

1, 0, 0, 0, 10, 32, 0, 0, 40, 0, 0, 0, 80, 160, 0, 0, 90, 0, 0, 0, 112, 320, 0, 0, 240, 0, 0, 0, 320, 480, 0, 0, 200, 0, 0, 0, 250, 800, 0, 0, 560, 0, 0, 0, 560, 992, 0, 0, 400, 0, 0, 0, 560, 1120, 0, 0, 800, 0, 0, 0, 960, 1760, 0, 0, 730, 0, 0, 0, 480, 1920, 0, 0, 1240, 0, 0, 0, 1520, 1920
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120, Eq. 96.

Programs

  • Mathematica
    terms = 78; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^4]^5 + (2*q*psi[q^8])^5 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
  • PARI
    N=66;  q='q+O('q^N);
    T3(q) = eta(q^2)^5 / ( eta(q)^2 * eta(q^4)^2 );
    T2(q) = eta(q^4)^2 / eta(q^2);
    Vec( T3(q^4)^5 + (2 * q * T2(q^4))^5 )
    \\ Joerg Arndt, Mar 30 2018

Formula

Theta series in terms of Jacobi theta series: (theta_2)^5 + (theta_3)^5.
Expansion of phi(q^4)^5 + ( 2 * q * psi(q^8) )^5 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 17 2007