cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008424 Theta series of {D_9}* lattice.

Original entry on oeis.org

1, 0, 0, 0, 18, 0, 0, 0, 144, 512, 0, 0, 672, 0, 0, 0, 2034, 4608, 0, 0, 4320, 0, 0, 0, 7392, 18432, 0, 0, 12672, 0, 0, 0, 22608, 47616, 0, 0, 34802, 0, 0, 0, 44640, 101376, 0, 0, 60768, 0, 0, 0, 93984, 193536, 0, 0, 125280, 0, 0, 0, 141120, 324096, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 18*q^4 + 144*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Cf. A008431.

Programs

  • Magma
    L := Dual(Lattice("D", 9));
    B := Basis(ThetaSeriesModularFormSpace(L), 100);
    S := [ 1, 0, 0, 0, 18];
    Coefficients(&+[B[i] * S[i] : i in [1..5]]); // Andy Huchala, Jul 24 2021
  • PARI
    N=66;  q='q+O('q^N);
    T3(q) = eta(q^2)^5 / ( eta(q)^2 * eta(q^4)^2 );
    T2(q) = eta(q^4)^2 / eta(q^2);
    Vec( T3(q^4)^9 + (2 * q * T2(q^4))^9 )
    \\ Joerg Arndt, Mar 29 2018
    

Formula

Theta series in terms of Jacobi theta series: (theta_2)^9 + (theta_3)^9. - Sean A. Irvine, Mar 28 2018

Extensions

More terms from Andy Huchala, Jul 24 2021