cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008428 Theta series of D_6 lattice.

Original entry on oeis.org

1, 60, 252, 544, 1020, 1560, 2080, 3264, 4092, 4380, 6552, 8160, 8224, 10200, 12480, 14144, 16380, 17400, 18396, 24480, 26520, 23040, 31200, 35904, 32800, 39060, 42840, 44608, 49344, 50520, 54080, 65280, 65532, 57600, 73080, 84864, 74460, 82200, 93600, 92480
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 60*x + 252*x^2 + 544*x^3 + 1020*x^4 + 1560*x^5 + 2080*x^6 + ...
G.f. = 1 + 60*q^2 + 252*q^4 + 544*q^6 + 1020*q^8 + 1560*q^10 + 2080*q^12 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 3), 80); A[1] + 60*A[3] + 252*A[5] + 544*A[7]; /* Michael Somos, Aug 26 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^6, {x, 0, 2 n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv(n, d, d^2 * (16 * kronecker(-4, n/d) - kronecker(-4, d))))}; /* Michael Somos, Nov 03 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^6, n))}; /* Michael Somos, Nov 03 2006 */
    

Formula

G.f.: (theta_3(q^(1/2))^6 + theta_4(q^(1/2))^6)/2
Expansion of ( phi(q)^6 + phi(-q)^6 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
a(n) = A000141(2*n).
G.f. is a period 1 Fourier series that satisfies f(-1 / (8 t)) = 12 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008425. - Michael Somos, Aug 26 2015