cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008445 Theta series of A_5 lattice.

Original entry on oeis.org

1, 30, 90, 140, 270, 360, 330, 660, 810, 570, 1020, 1260, 1100, 1560, 1620, 1452, 2190, 2340, 1710, 2940, 3240, 1920, 3360, 3960, 2970, 3930, 4140, 3920, 5460, 4680, 3360, 5940, 6570, 4620, 6180, 7560, 5130, 7320, 7920, 5280, 9180, 8100, 6600, 10500, 9900
Offset: 0

Views

Author

Keywords

Examples

			1 + 30*q^2 + 90*q^4 + 140*q^6 + 270*q^8 + 360*q^10 + 330*q^12 + 660*q^14 + 810*q^16 + 570*q^18 + 1020*q^20 + 1260*q^22 + 1100*q^24 + 1560*q^26 + 1620*q^28 + 1452*q^30 + 2190*q^32 + 2340*q^34 + 1710*q^36 + 2940*q^38 + 3240*q^40 + 1920*q^42 + 3360*q^44 + 3960*q^46 + 2970*q^48 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.

Programs

  • Magma
    L:=Lattice("A",5); T1 := ThetaSeries(L,120);
    
  • Mathematica
    terms = 45; f[q_] = LatticeData["A5", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    seq(N) = {
      my(q=[2,-1,0,0,0; -1,2,-1,0,0; 0,-1,2,-1,0;
            0,0, -1,2,-1; 0,0,0,-1,2]);
      concat(1, 2*Vec(qfrep(q,N-1,1)));
    };
    seq(45) \\ Gheorghe Coserea, Nov 25 2018