A008445 Theta series of A_5 lattice.
1, 30, 90, 140, 270, 360, 330, 660, 810, 570, 1020, 1260, 1100, 1560, 1620, 1452, 2190, 2340, 1710, 2940, 3240, 1920, 3360, 3960, 2970, 3930, 4140, 3920, 5460, 4680, 3360, 5940, 6570, 4620, 6180, 7560, 5130, 7320, 7920, 5280, 9180, 8100, 6600, 10500, 9900
Offset: 0
Keywords
Examples
1 + 30*q^2 + 90*q^4 + 140*q^6 + 270*q^8 + 360*q^10 + 330*q^12 + 660*q^14 + 810*q^16 + 570*q^18 + 1020*q^20 + 1260*q^22 + 1100*q^24 + 1560*q^26 + 1620*q^28 + 1452*q^30 + 2190*q^32 + 2340*q^34 + 1710*q^36 + 2940*q^38 + 3240*q^40 + 1920*q^42 + 3360*q^44 + 3960*q^46 + 2970*q^48 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
Links
- John Cannon, Table of n, a(n) for n = 0..5000
- LMFDB, Integral Lattice A5.
Programs
-
Magma
L:=Lattice("A",5); T1
:= ThetaSeries(L,120);
-
Mathematica
terms = 45; f[q_] = LatticeData["A5", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
-
PARI
seq(N) = { my(q=[2,-1,0,0,0; -1,2,-1,0,0; 0,-1,2,-1,0; 0,0, -1,2,-1; 0,0,0,-1,2]); concat(1, 2*Vec(qfrep(q,N-1,1))); }; seq(45) \\ Gheorghe Coserea, Nov 25 2018