cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008476 If n = Product (p_j^k_j) then a(n) = Sum (k_j^p_j).

Original entry on oeis.org

0, 1, 1, 4, 1, 2, 1, 9, 8, 2, 1, 5, 1, 2, 2, 16, 1, 9, 1, 5, 2, 2, 1, 10, 32, 2, 27, 5, 1, 3, 1, 25, 2, 2, 2, 12, 1, 2, 2, 10, 1, 3, 1, 5, 9, 2, 1, 17, 128, 33, 2, 5, 1, 28, 2, 10, 2, 2, 1, 6, 1, 2, 9, 36, 2, 3, 1, 5, 2, 3, 1, 17, 1, 2, 33, 5, 2, 3, 1, 17, 64, 2, 1, 6, 2, 2, 2, 10, 1, 10, 2, 5, 2, 2, 2, 26
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    A008476 := proc(n) local e,j; e := ifactors(n)[2]:
    add (e[j][2]^e[j][1], j=1..nops(e)) end:
    seq (A008476(n), n=1..80);
    # Peter Luschny, Jan 17 2011
  • Mathematica
    Prepend[ Array[ Plus @@ Map[ Power @@ RotateLeft[ #1, 1 ]&, FactorInteger[ # ] ]&, 100, 2 ], 1 ]
    Total[ #2^#1 & @@@ FactorInteger[ # ]] & /@ Range[100] (* Peter Pein (petsie(AT)dordos.net), Dec 21 2007 *)
  • PARI
    for(n=1, 110, print1(sum(i=1, omega(n), component(component(factor(n), 2), i)^component(component(factor(n), 1), i)), ", "))

Formula

Additive with a(p^e) = e^p.

Extensions

More terms from Benoit Cloitre, Jun 07 2002