A008479 Number of numbers <= n with same prime factors as n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 4, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 3, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 9
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Paul Erdős and T. Motzkin, Problem 5735, Amer. Math. Monthly, 78 (1971), 680-681. (Incorrect solution!)
- H. N. Shapiro, Problem 5735, Amer. Math. Monthly, 97 (1990), 937.
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1)..a(N) V:= Vector(N): V[1]:= 1: for n from 2 to N do if V[n] = 0 then S:= {n}; for p in numtheory:-factorset(n) do S := S union {seq(seq(s*p^k,k=1..floor(log[p](N/s))),s=S)}; od: S:= sort(convert(S,list)); for k from 1 to nops(S) do V[S[k]]:= k od: fi od: convert(V,list); # Robert Israel, May 20 2016
-
Mathematica
PkTbl=Prepend[ Array[ Times @@ First[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ];1+Array[ Count[ Take[ PkTbl, #-1 ], PkTbl[ [ # ] ] ]&, Length[ PkTbl ] ] Count[#, k_ /; k == Last@ #] & /@ Function[s, Take[s, #] & /@ Range@ Length@ s]@ Array[Map[First, FactorInteger@ #] &, 120] (* or *) Table[Sum[(Floor[n^k/k] - Floor[(n^k - 1)/k]) (Floor[k^n/n] - Floor[(k^n - 1)/n]), {k, n}], {n, 120}] (* Michael De Vlieger, May 20 2016 *)
-
PARI
a(n)=my(f=factor(n)[,1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); s \\ Charles R Greathouse IV, Oct 19 2017
-
Scheme
(define (A008479 n) (if (not (zero? (A008683 n))) 1 (+ 1 (A008479 (A285328 n))))) ;; Antti Karttunen, Apr 17 2017
Formula
a(n) = Sum_{k=1..n} (floor(n^k/k)-floor((n^k-1)/k))*(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 20 2016
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = 1, otherwise a(n) = 1+a(A285328(n)). - Antti Karttunen, Apr 17 2017
a(n) <= A010846(n), with equality if and only if n = 1. - Amiram Eldar, May 25 2025
a(m^(k+1)) = A010846(m^k) when m is squarefree. - Flávio V. Fernandes, Aug 20 2025
Comments