cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008489 Expansion of (1-x^7)/(1-x)^7.

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1715, 2996, 4977, 7924, 12166, 18102, 26208, 37044, 51261, 69608, 92939, 122220, 158536, 203098, 257250, 322476, 400407, 492828, 601685, 729092, 877338, 1048894, 1246420, 1472772, 1731009, 2024400, 2356431, 2730812, 3151484
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 6-dimensional cyclotomic lattice Z[zeta_7].
Growth series of the affine Weyl group of type A6. - Paul E. Gunnells, Jan 06 2017

References

  • R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 7*n*(84 +35*n^2 +n^4)/120)); # G. C. Greubel, Nov 07 2019
  • Magma
    [1] cat [7*n*(84 +35*n^2 +n^4)/120: n in [1..40]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    1, seq(7*n*(84 +35*n^2 +n^4)/120, n=1..40); # G. C. Greubel, Nov 07 2019
  • Mathematica
    CoefficientList[(1-x^7)/(1-x)^7 + O[x]^40, x] (* Jean-François Alcover, Jan 09 2019 *)
  • PARI
    Vec((x^6+x^5+x^4+x^3+x^2+x+1)/(x-1)^6 + O(x^40)) \\ Colin Barker, Mar 04 2015
    
  • Sage
    [1]+[7*n*(84 +35*n^2 +n^4)/120 for n in (1..40)] # G. C. Greubel, Nov 07 2019
    

Formula

Equals binomial transform of [1, 6, 15, 20, 15, 6, 1, -1, 1, -1, 1, ...] - Gary W. Adamson, Apr 29 2008
a(n) = 7*n*(84 + 35*n^2 + n^4)/120, n>0. - R. J. Mathar, Mar 17 2011
G.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1-x)^6. - Colin Barker, Mar 04 2015
E.g.f.: 1 + x*(840 + 840*x + 420*x^2 + 70*x^3 + 7*x^4)*exp(x)/120. - G. C. Greubel, Nov 07 2019