A008555 Primitive parts of Pell numbers.
1, 2, 5, 6, 29, 7, 169, 34, 197, 41, 5741, 33, 33461, 239, 1345, 1154, 1136689, 199, 6625109, 1121, 45697, 8119, 225058681, 1153, 45232349, 47321, 7761797, 38081, 44560482149, 961, 259717522849, 1331714, 52734529, 1607521, 1800193921, 39201
Offset: 1
Keywords
Examples
a(8)=34 because pell(8)=408 and 408/(a(4)*a(2)*a(1)) = 408/12 = 34. [From _T. D. Noe_, May 07 2009]
References
- R. K. Guy, Unsolved Problems in Number Theory, A3.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Eric Weisstein's World of Mathematics, Sylvester Cyclotomic Number. - _Paul Barry_, Apr 15 2005
Programs
-
Mathematica
pell={1,2}; pp={1,2}; Do[s=2*pell[[ -1]]+pell[[ -2]]; AppendTo[pell,s]; AppendTo[pp, s/Times@@pp[[Most[Divisors[n]]]]], {n,3,40}]; pp (* T. D. Noe, May 07 2009 *)
Formula
a(n) = A000129(n) / Product_{dT. D. Noe, May 07 2009]
a(n) = Product_{k=1..n-1} if(gcd(n, k)=1, (1+sqrt(2))-(1-sqrt(2))*exp(2*Pi*I*k/n), 1), I=sqrt(-1). - Paul Barry, Apr 15 2005
Extensions
Corrected and extended by T. D. Noe, May 07 2009
Edited by N. J. A. Sloane, Oct 04 2009
Comments