cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008556 Triangle of coefficients of Legendre polynomials 2^n P_n (x).

Original entry on oeis.org

1, 2, 6, 2, 20, 12, 70, 60, 6, 252, 280, 60, 924, 1260, 420, 20, 3432, 5544, 2520, 280, 12870, 24024, 13860, 2520, 70, 48620, 102960, 72072, 18480, 1260, 184756, 437580, 360360, 120120, 13860, 252, 705432, 1847560, 1750320, 720720, 120120, 5544
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
1,
2,
6, 2,
20, 12,
70, 60, 6,
252, 280, 60,
924, 1260, 420, 20,
3432, 5544, 2520, 280,
12870, 24024, 13860, 2520, 70,
48620, 102960, 72072, 18480, 1260,
184756, 437580, 360360, 120120, 13860, 252,
705432, 1847560, 1750320, 720720, 120120, 5544,
2704156, 7759752, 8314020, 4084080, 900900, 72072, 924,
10400600, 32449872, 38798760, 22170720, 6126120, 720720, 24024,
40116600, 135207800, 178474296, 116396280, 38798760, 6126120, 360360, 3432,
155117520, 561632400, 811246800, 594914320, 232792560, 46558512, 4084080, 102960,
...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.

Crossrefs

Cf. A115951.

Programs

  • Maple
    series(1/sqrt(1-2*x*z+z^2),z,20): for n to 19 do print(2^n*coeff(%,z,n)); od;
  • Mathematica
    Table[Binomial[2 (n - k), n - k] Binomial[n - k, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten (* or *)
    Table[Reverse@ Abs@ CoefficientList[Series[2^n LegendreP[n, x], {x, 0, n}], x] /. 0 -> Nothing, {n, 0, 11}] // Flatten (* Michael De Vlieger, Apr 07 2016 *)
  • PARI
    row(n) = my(v = Vec(2^n*pollegendre(n))); vector((#v+1)\2, k, abs(v[2*k-1])); \\ Michel Marcus, Apr 07 2016
    
  • PARI
    T(n,k) = binomial(2*(n-k), n-k) * binomial(n-k, k);
    for(n=0,10,for(k=0,n\2,print1(T(n,k),", "))); \\ Joerg Arndt, Apr 07 2016

Formula

T(n,k) = C(2*(n-k), n-k) * C(n-k, k). - Ralf Stephan, Apr 07 2016