A008583 Molien series for Weyl group E_7.
1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 55, 67, 80, 98, 117, 138, 165, 194, 226, 266, 309, 356, 413, 475, 542, 622, 708, 802, 911, 1029, 1157, 1304, 1462, 1633, 1827, 2036, 2261, 2514, 2785
Offset: 0
References
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.
- L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 36).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 250
- Tengiz O. Gogoberidze, Baker's dozen digits of two sums involving reciprocal products of an integer and its greatest prime factor, arXiv:2407.12047 [math.GM], 2024. See p. 6.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 0, 2, 0, 1, 0, 0, -1, 0, -2, 0, -1, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, 1).
Crossrefs
Cf. A005795.
Programs
-
Magma
MolienSeries(CoxeterGroup("E7")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
Maple
A008583_list := proc(n) local G,j; G:= series(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)),x,n+1); [seq(coeff(G,x,j),j=0..n)]; end proc; # Robert Israel, Mar 26 2012
-
Mathematica
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^9)),{x,0,50}],x] (* Harvey P. Dale, Mar 04 2013 *)
-
PARI
A008583_list(n)=Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9))+O(x^n)) /* returns n terms [a(0),...,a(n-1)] */ \\ M. F. Hasler, Mar 26 2012
-
Sage
def A008583_list(n) : R.
= PowerSeriesRing(ZZ) G = 1/((1-t)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^9) + O(t^n)) return G.padded_list() # Peter Luschny, Mar 27 2012
Formula
G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)).
Comments