cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008645 Molien series of 6 X 6 upper triangular matrices over GF( 2 ).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 202, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598
Offset: 0

Views

Author

Keywords

Comments

Different from A018819 (see g.f.). - Joerg Arndt, Apr 22 2016

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(&*[1-x^(2^j): j in [0..5]]) )); // G. C. Greubel, Feb 02 2020
    
  • Maple
    seq(coeff(series( 1/mul((1-x^(2^j)), j=0..5)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Feb 02 2020
  • Mathematica
    CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^4)/(1-x^8)/(1-x^16)/(1-x^32), {x, 0, 100}], x] (* Vaclav Kotesovec, Apr 22 2016 *)
  • PARI
    Vec( 1/prod(j=0,5, 1-x^(2^j)) +O('x^50) ) \\ G. C. Greubel, Feb 02 2020
    
  • Sage
    def A008645_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product(1-x^(2^j) for j in (0..5)) ).list()
    A008645_list(50) # G. C. Greubel, Feb 02 2020

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)*(1-x^32)).