cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008648 Molien series of 3 X 3 upper triangular matrices over GF( 5 ).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 21, 21, 21, 21, 21, 24, 24, 24, 24, 24
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 1, 5, and 25. - Joerg Arndt, Sep 07 2019

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Crossrefs

Cf. A002266.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^5)*(1-x^25)) )); // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^5)*(1-x^25)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Sep 06 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^5)*(1-x^25)), {x,0,70}], x] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^5)*(1-x^25))) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    def A008648_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^5)*(1-x^25))).list()
    A008648_list(70) # G. C. Greubel, Sep 06 2019

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^25)).