A008648 Molien series of 3 X 3 upper triangular matrices over GF( 5 ).
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 21, 21, 21, 21, 21, 24, 24, 24, 24, 24
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 221
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1).
Crossrefs
Cf. A002266.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^5)*(1-x^25)) )); // G. C. Greubel, Sep 06 2019 -
Maple
seq(coeff(series(1/((1-x)*(1-x^5)*(1-x^25)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Sep 06 2019
-
Mathematica
CoefficientList[Series[1/((1-x)*(1-x^5)*(1-x^25)), {x,0,70}], x] (* G. C. Greubel, Sep 06 2019 *)
-
PARI
my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^5)*(1-x^25))) \\ G. C. Greubel, Sep 06 2019
-
Sage
def A008648_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/((1-x)*(1-x^5)*(1-x^25))).list() A008648_list(70) # G. C. Greubel, Sep 06 2019
Formula
G.f.: 1/((1-x)*(1-x^5)*(1-x^25)).
Comments