cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008774 Theta series of (probably nonexistent) exceptionally good 16-dimensional sphere packing.

Original entry on oeis.org

1, 0, 0, 7680, 4320, 276480, 61440, 2903040, 522720, 16896000, 2211840, 68774400, 8960640, 221460480, 23224320, 603325440, 67154400, 1448202240, 135168000, 3154982400, 319809600, 6359654400, 550195200, 12016788480, 1147643520
Offset: 0

Views

Author

Keywords

Examples

			1 + 7680*q^3 + 4320*q^4 + 276480*q^5 + 61440*q^6 + 2903040*q^7 + ...
		

Crossrefs

A008409(n) = a(2*n). 7680 * A135828(n) = a(2*n+3).

Programs

  • Mathematica
    QP = QPochhammer; a[n_] := Module[{A, A1, A2, A4}, A = x*O[x]^n; A1 = QP[x+ A]^8; A2 = QP[x^2+A]^8; A4 = QP[x^4+A]^8; SeriesCoefficient[(A1*(A2^6 + x^2*32*A2^3*A4^3 + x^4*4096*A4^6) + x^3*3840*A4^4*(A1^2*A4 + A2^3)) / (A1*A2^2*A4^2), n]]; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A, A1, A2, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; A4 = eta(x^4 + A)^8; polcoeff( ( A1 * (A2^6 + x^2 * 32 * A2^3 * A4^3 + x^4 * 4096 * A4^6) + x^3 * 3840 * A4^4 * ( A1^2 * A4 + A2^3 ) ) / (A1 * A2^2 * A4^2 ), n))} /* Michael Somos, Nov 29 2007 */

Formula

Expansion of ( E_4(q) * 2 * (E_4(q^2) - E_4(q^4)) + E_4(q^2) * (32 * E_4(q^4) - 17 * E_4(q^2)) ) / 15 in powers of q. - Michael Somos, Nov 29 2007