A008867 Triangle of truncated triangular numbers: k-th term in n-th row is number of dots in hexagon of sides k, n-k, k, n-k, k, n-k.
1, 3, 3, 6, 7, 6, 10, 12, 12, 10, 15, 18, 19, 18, 15, 21, 25, 27, 27, 25, 21, 28, 33, 36, 37, 36, 33, 28, 36, 42, 46, 48, 48, 46, 42, 36, 45, 52, 57, 60, 61, 60, 57, 52, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 66, 75, 82, 87, 90, 91, 90, 87, 82, 75, 66, 78, 88, 96, 102, 106, 108, 108, 106, 102, 96, 88, 78
Offset: 2
Examples
Triangle begins: n = 0: 1; n = 1: 3, 3; n = 2: 6, 7, 6; n = 3: 10, 12, 12, 10; n = 4: 15, 18, 19, 18, 15; n = 5: 21, 25, 27, 27, 25, 21; n = 6: 28, 33, 36, 37, 36, 33, 28;
References
- Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 2..1226, rows 1..50, flattened.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Luca Onnis, Animation of this variant of the Ehrenfest model using n = 15 balls.
- Wikipedia, Ehrenfest model.
Programs
-
Maple
T:= (n, k)-> n*(n-3)/2 - k^2+k*n+1: seq(seq(T(n,k), k=1..n-1), n=2..14);
-
Mathematica
T[n_,k_] := n*(n-3)/2 - k^2 + k*n + 1; Table[T[n,k], {n,3,20}, {k,n,2,-1}] // Flatten (* Amiram Eldar, Dec 12 2018 *)
Formula
T(n,k) = n*(n-3)/2 - k^2 + k*n + 1.
Comments