A008892 Aliquot sequence starting at 276.
276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964, 10164, 19628, 19684, 22876, 26404, 30044, 33796, 38780, 54628, 54684, 111300, 263676, 465668, 465724, 465780, 1026060, 2325540, 5335260, 11738916, 23117724, 45956820, 121129260, 266485716
Offset: 0
Keywords
References
- K. Chum, R. K. Guy, M. J. Jacobson, Jr., and A. S. Mosunov, Numerical and statistical analysis of aliquot sequences. Exper. Math. 29 (2020), no. 4, 414-425; arXiv:2110.14136, Oct. 2021 [math.NT].
- Richard K. Guy, Unsolved Problems in Number Theory, B6.
- Richard K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
Links
- Tyler Busby, Table of n, a(n) for n = 0..2157 (terms 0..2127 from Daniel Suteu, terms 2128..2140 from Jeppe Stig Nielsen)
- Christophe Clavier, Aliquot Sequences
- Christophe Clavier, Trajectory of 276 - the first 1576 terms and their factorizations
- Christophe Clavier, Trajectory of 276 - the first 1576 terms and their factorizations [Cached copy]
- Wolfgang Creyaufmüller, Lehmer Five
- Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
- Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
- FactorDB (factordb.com), Search result for last 20 terms of 276 sequence.
- Brady Haran and Ben Sparks, An amazing thing about 276, Numberphile YouTube video, 2024.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 13.
- Paul Zimmermann, Recent information
- Index entries for sequences related to aliquot parts.
Crossrefs
Programs
-
Maple
f := proc(n) option remember; if n = 0 then 276; else sigma(f(n-1))-f(n-1); fi; end:
-
Mathematica
NestList[DivisorSigma[1, #] - # &, 276, 50] (* Alonso del Arte, Feb 24 2018 *)
-
PARI
a(n, a=276)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018
Formula
a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017
Comments