cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008892 Aliquot sequence starting at 276.

Original entry on oeis.org

276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964, 10164, 19628, 19684, 22876, 26404, 30044, 33796, 38780, 54628, 54684, 111300, 263676, 465668, 465724, 465780, 1026060, 2325540, 5335260, 11738916, 23117724, 45956820, 121129260, 266485716
Offset: 0

Views

Author

Keywords

Comments

It is an open question whether this sequence ever reaches 0. The trajectory has been calculated to 2145 terms, and is still growing, term 2145 being a 214-digit number (see FactorDB link). - N. J. A. Sloane, Jan 11 2023
The aliquot sequence starting at 306 joins this sequence after one step.
This sequence cannot be extended backwards, since A359132(276) = -1. - N. J. A. Sloane, Jan 10 2023
One can note that the k-tuple abundance of 276 is only 5, since a(6) = 3790 is deficient. On the other hand, the k-tuple abundance of a(8) = 2716 is 164 since a(172) is deficient (see A081705 for definition of k-tuple abundance). - Michel Marcus, Dec 31 2013

References

  • K. Chum, R. K. Guy, M. J. Jacobson, Jr., and A. S. Mosunov, Numerical and statistical analysis of aliquot sequences. Exper. Math. 29 (2020), no. 4, 414-425; arXiv:2110.14136, Oct. 2021 [math.NT].
  • Richard K. Guy, Unsolved Problems in Number Theory, B6.
  • Richard K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.

Crossrefs

Cf. A001065, A098007 (length of aliquot sequences).
Cf. A008885 (aliquot sequence starting at 30), ..., A008891 (starting at 180).

Programs

  • Maple
    f := proc(n) option remember; if n = 0 then 276; else sigma(f(n-1))-f(n-1); fi; end:
  • Mathematica
    NestList[DivisorSigma[1, #] - # &, 276, 50] (* Alonso del Arte, Feb 24 2018 *)
  • PARI
    a(n, a=276)={for(i=1,n,a=sigma(a)-a);a} \\ M. F. Hasler, Feb 24 2018

Formula

a(n+1) = A001065(a(n)). - R. J. Mathar, Oct 11 2017