A008896 3x - 1 sequence starting at 66.
66, 33, 98, 49, 146, 73, 218, 109, 326, 163, 488, 244, 122, 61, 182, 91, 272, 136, 68, 34, 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, E16.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Cf. A008880 (3x + 1 sequence starting at 33).
Programs
-
Mathematica
NestList[If[EvenQ[#], #/2, 3# - 1] &, 66, 50] (* or *) PadRight[ {66, 33, 98, 49, 146, 73, 218, 109, 326, 163, 488, 244}, 120, {68, 34, 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136}] (* Harvey P. Dale, Sep 02 2018 *)
-
Scala
def collatz(n: Int): Int = n % 2 match { case 0 => n / 2 case _ => 3 * n + 1 } def collatzSeq(n: Int): LazyList[Int] = LazyList.iterate(n)(collatz) collatzSeq(-33).take(100).toList.map( * -1) // _Alonso del Arte, Apr 25 2020
Formula
a(0) = 66, a(n) = a(n - 1)/2 if a(n - 1) is even, otherwise 3a(n - 1) - 1.
Extensions
More specific name from Alonso del Arte, Apr 25 2020 (was "x -> x/2 if x even, x -> 3x - 1 if x odd").