cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008951 Array read by columns: number of partitions of n into parts of 2 kinds.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 1, 5, 7, 2, 7, 12, 5, 11, 19, 9, 1, 15, 30, 17, 2, 22, 45, 28, 5, 30, 67, 47, 10, 42, 97, 73, 19, 1, 56, 139, 114, 33, 2, 77, 195, 170, 57, 5, 101, 272, 253, 92, 10, 135, 373, 365, 147, 20, 176, 508, 525, 227, 35, 1, 231, 684, 738, 345, 62, 2, 297
Offset: 0

Views

Author

Keywords

Comments

Fine-Riordan array S_n(m) = a(n,m) with extra row for n=0 added.
Row n of this triangle has length floor(1/2 + sqrt(2*(n+1))), n>=0. This is sequence {A002024(n+1)} = [1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,...].
Written as a triangle this becomes A103923.
a(n,m) also gives the number of partitions of n-t(m), where t(m):=A000217(m) (triangular numbers), with two kinds of parts 1,2,..m. See the column o.g.f.'s in table A103923.
In general, column m is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015

Examples

			Array begins:
m\n 0 1 2 3 4 .5 .6 .7 .8 ...
0 | 1 1 2 3 5 .7 11 15 22 ... (A000041)
1 | . 1 2 4 7 12 19 ... (A000070)
2 | . . . 1 2 .5 .9 ... (A000097)
3 | . . . . . .. .1 ... (A000098)
[1]; [1,1]; [2,2]; [3,4,1]; [5,7,2]; [7,12,5]; [11,19,9,1]...
a(3,1) = 4 because the partitions (3), (1,2) and (1^3) have q values 1,2 and 1 which sum to 4.
a(3,1) = 4 because the exponents of part 1 in the above given partitions of 3 are 0,1,3 and they sum to 4.
a(3,1) = 4 because the partitions of 3-t(1)=2 with two kinds of part 1, say 1 and 1' and one kind of part 2 are (2),(1^2), (1'^2) and (11').
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

The first column (m=0) gives A000041(n). Columns m=1..10 are A000070 (partial sums of partition numbers), A000097, A000098, A000710, A103924-A103929.

Programs

  • Maple
    a:= proc(n, m) option remember; `if`(n<0, 0,
          `if`(m=0, combinat[numbpart](n), a(n-m, m-1) +a(n-m, m)))
        end:
    seq(seq(a(n,m), m=0..round(sqrt(2*n+2))-1), n=0..20);  # Alois P. Heinz, Nov 16 2012
  • Mathematica
    a[n_, 0] := PartitionsP[n]; a[n_, m_] /; (n >= m*(m+1)/2) := a[n, m] = a[n-m, m-1] + a[n-m, m]; a[n_, m_] = 0; Flatten[ Table[ a[n, m], {n, 0, 18}, {m, 0, Floor[1/2 + Sqrt[2*(n+1)]] - 1}]](* Jean-François Alcover, May 02 2012, after recurrence formula *)
    DeleteCases[Flatten@Transpose@Table[ConstantArray[0, m (m + 1)/2]~Join~Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@m], {n, 0, 21 - m (m + 1)/2}] , {m, 0, 6}], 0](* Robert Price, Jul 28 2020 *)

Formula

Riordan gives formula.
a(n, m) is the sum over partitions of n of Product_{j=1..m} k(j), where k(j) is the number of parts of size j (exponent of j in a given partition of n), if m>=1. If m=0 then a(n, 0)=p(n):=A000041(n) (number of partitions of n). O is counted as a part for n=0 and only for this n.
a(n, m) is the sum over partitions of n of binomial(q(partition), m), with q the number of distinct parts of a given partition. m>=0.
a(n, m) = a(n-m, m-1) + a(n-m, m), n >= t(m):=m*(m+1)/2 = A000217(m) (triangular numbers), otherwise 0, with input a(n, 0) = p(n):=A000041(n).

Extensions

More terms from Robert G Bearden (nem636(AT)myrealbox.com), Apr 27 2004
Correction, comments and Riordan formulas from Wolfdieter Lang, Apr 28 2005