A008969 Triangle of differences of reciprocals of unity.
1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1, 3; 1, 11, 7; 1, 50, 85, 15; 1, 274, 1660, 575, 31; 1, 1764, 48076, 46760, 3661, 63; 1, 13068, 1942416, 6998824, 1217776, 22631, 127; 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255; ...
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
Links
- Alois P. Heinz, Rows n = 1..45, flattened
Crossrefs
Programs
-
Maple
T:= (n,k)-> `if`(k<=n, (n-k+2)!^k * add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0): seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
-
Mathematica
T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)